A Reproduced Copy of

(NASA-CR-125887) SNAP: A COMPUTER PROGRAM FOR GENERATING SYMBOLIC NETWORK FUNCTIONS P.M. Lin, et al (Purdue Univ.) Aug. 1970 125 p CSCL 09B

(NASA CR ORTMX OR AD NUMBER)

(CATEGORI)

G3/10

Unclas
15311

APR 1912

APR 1912

RECEIVED

MSM STI FAMILIE

MSM STI FAMIL

Reproduced for NASA by the

NASA Scientific and Technical Information Facility

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

SNAP A COMPUTER PROGRAM FOR GENERATING SYMBOLIC NETWORK FUNCTIONS

P. M. Lin G. E. Alderson

School of Electrical Engineering
Purdue University
Lafayette, Indiana

Supported by National Aeronautics and Space Administration Grant NGL 15-005-021

TABLE OF CONTENTS

I. IN	TRODUCTION
II. A	GENERAL DISCUSSION OF THE BASIC ALGORITHMS
II-1.	Formulating the Signal-Flow Graph (SFG)
	a. Data Required
	b. Finding a Tree · · · · · · · · · · · · · · · · · ·
	c. Rules for Formulating the Compact SFG
	d. The Gain Formula for "Closed" SFG
TT-2.	Manipulating SFG Branch Weights
TT-3.	Generating First Order Loops
12 3.	a. General Description · · · · · · · · · · · · · · · · · · ·
	b. A detailed Description of the Path-Finding Algorithm • • • • • 18
	Generating Nontouching Loops of Order Two or More · · · · · · · · 21
III.	USER'S GUIDE
	Information Needed by User
	Appendix A (A Sorting Technique for Handling Multi-
	Input, Multi-Output Networks)
	Appendix B (A Brief List of Limitations on the
•	Size and Type of Network Allowed)
	Appendix C (Selecting a "Good" Tree)
III-2.	Tree to the state of the state
III-L	Hoditying the Dimension of Afrays
IV. P	ROGRAMMER'S GUIDE • • • • • • • • • • • • • • • • • • •
IV-1.	Definitions • • • • • • • • • • • • • • • • • • •
	Flow Charts • • • • • • • • • • • • • • • • • • •
	Program Listing · · · · · · · · · · · · · · · · · · ·
nenene	NCES • • • • • • • • • • • • • • • • • • •
Kたせただと	NULLS + + + + + + + + + + + + + + + + + +

I. INTRODUCTION

The majority of computer aided circuit analysis programs belong to the class of "numerical programs", that is, the output is some numerical value. At the time of our research a few programs, most notably ANP1 (8)*, NASAP (9), and CORNAP (10) could generate network functions as rational functions of s but did not allow the value of any element to be left in symbol form. The research project reported here represents, we believe, the first effort to generate symbolic network functions. By a symbolic network function we mean $\frac{V_{out}}{V_{in}}$, $\frac{V_{out}}{V_{in}}$, or $\frac{I_{out}}{V_{in}}$ as a ratio of two polynomials of one of the following types:

(1) all network element values are represented by symbols (the symbols need not all be different)

Examples:
$$\frac{V_{out}}{V_{in}} = \frac{s^2 LRC}{s^2 2 LRC + s(L+R^2C) + R}$$

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{ZYR}{2ZYR + Z + R^2Y + R}$$

(2) some element values are specified numerically, some symbolically, Example: $\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{s^2 R}{s^2 2R + s(.5 \times 10^6 + 150 R^2) + .75 \times 10^8 R}$

or

(3) all element values are given numerically,

Example:
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{s^2}{2s^2 + 2x10^4 s + .75x10^8}$$

There are many reasons why one may be interested in totally or partially symbolic network functions. The following presents a few of the more important ones.

(1) Insight. To illustrate the added "insight" symbolic programs can provide

in comparison to numerical type programs, suppose we have been asked to verify that the network in Fig. 1 is a negative impedance converter for large β , i.e.,

$$Z_{in}(s) \rightarrow -Z_{L}(s)$$
 as $\beta \rightarrow \infty$ (1)

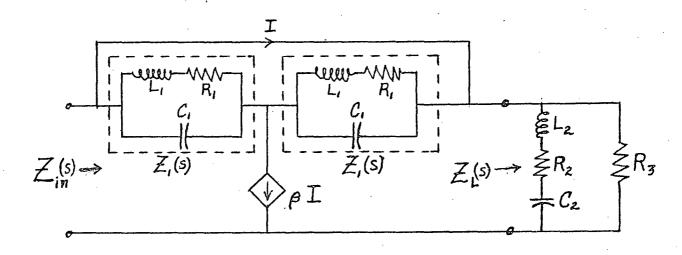


Figure 1

To verify (1) with some degree of certainty using a numerical program would require evaluating $Z_{in}(s)$ (and $Z_{L}(s)$) for many different values of β and frequency ω , a time consuming process at best since most programs must completely re-evaluate the network response for every relatively large change in parameter values. Furthermore, the resulting verification would only be valid for the particular structure and component values chosen for $Z_{L}(s)$. With a symbolic program, one computer run gives the symbolic transfer function

$$Z_{in}(s) = Z_{L}(s) \left(\frac{2+\beta}{2-\beta}\right)$$

from which (1) follows immediately.

(2) Error Control. To demonstrate how a symbolic program can be used to effectively control round-off error, consider the differential amplifier (1)

shown in Figures 1 and 2 of Section II-1. If network branches 1, 2, 5, and 11 are chosen as the tree for deriving the signal-flow graph (SFG), then the set of nontouching loops (all orders with sign attached) which belong to the numerator of the low frequency transfer function

$$\frac{I_{out}}{V_{in}}\Big|_{s=0} = \frac{N}{\Delta}$$

is given by

$$\left\{\frac{R1R3A2}{(RE)^2R2}, \frac{-R1R3A1}{(RE)^2R2}, \frac{R1R3A1}{(RE)^2R2}, \frac{-R1A1}{RER2}, \frac{-R3R1A2}{(RE)^2R2}, \frac{R1A2}{RER2}\right\}$$

and the corresponding set for the denominator is given by

$$\left\{\frac{R1}{R2}, \frac{R1}{R2}, \frac{R3}{RE}, \frac{R3}{RE}, \frac{R1R3}{R2RE}, \frac{R1R3}{R2RE}, \frac{R1R3}{R2RE}, \frac{R1R3}{R2RE}\right\}$$

Letting A2=A1, R1=5K, R2=15K, R3=10K, and RE=25, evaluate N and Δ by summing the terms in the order given in the above sets keeping each number generated to 8 significant digits. Then

$$N = A1[5.3333333-5.3333333+5.3333333-.013333333-5.3333333+0.13333333]$$
$$= 3.3x10^{-8}A1$$

and $\Delta = 1335$

Thus
$$\frac{I_{\text{out}}}{V_{\text{in}}}\Big|_{s=0} = \frac{3.3 \times 10^{-8}}{1335} \text{ A1}$$

which is incorrect since N≡O. Although the above transfer function was derived using SFG theory, round-off errors which cause erroneous results can occur in any computer program restricted to numerical evaluation, and are generally very difficult to predict or control. Because round-off error enhancement in the evaluation of network functions often occurs as a result of widely separated values of some of the network elements, one method of error control would be to leave such element values in

symbolic form. This technique can be applied to the above example by noting that RE should be kept as a symbol since its value is considerably less than the other resistance values. Thus, keeping RE as a symbol and re-evaluating N gives

$$N=A1\left[\frac{3333.3333}{(RE)^2} - \frac{3333.3333}{(RE)^2} + \frac{3333.3333}{(RE)^2} - \frac{.333333333}{RE}\right]$$

$$-\frac{3333.3333}{(RE)^2} + \frac{.333333333}{RE} = 0$$

That is,

$$\frac{I_{\text{out}}}{v_{\text{in}}}\Big|_{s=0} = 0$$

- (3) Sensitivity Analysis. Sensitivity of the network function to changes in a particular network parameter can be found using a symbolic program by keeping this parameter as a symbol and then performing the required differentiation. Although there exist powerful numerical techniques for sensitivity analysis, the above procedure using a symbolic program has the particularly desirable feature of being less susceptible to round-off errors.
- (4) Parameter Variation. Suppose we wanted to evaluate the network function for many different values of one or more network parameters. Using a symbolic program, we could leave these parameters in symbol form and then efficiently and accurately perform the large number of required evaluations on the resulting symbolic network function. On the other hand numerical programs now available must re-derive the transfer function for every relatively large parameter change.
- (5) Iterative Piecewise Linear Analysis of Resistive Nonlinear Networks. (11)

 Part of this powerful analysis technique requires the solution of a

resistive <u>linear</u> network where some resistances and some d-c sources are kept in symbol form.

The primary objective* of this project has been the development of some new or improved concepts needed to make a symbolic network analysis program efficient with respect to program storage and execution time. The project culminated in the program SNAP (Symbolic Network Analysis Program) which finds symbolic network functions for networks containing R, L, and C type elements and all four types of controlled sources. SNAP contains the following unique features:

- (1) The extensive use of a path-finding algorithm in place of matrix operations,
- (2) Efficient techniques for finding all loops of the SFG and for enumerating all higher order loops,
- (3) The use of the "compact signal-flow graph" instead of the "primitive signal-flow graph", and
- (4) A simple coding technique which is used
 - (a) manipulate symbols thereby allowing the complete program to be written in Fortran (another important aspect of the coding scheme is that it permits repeated symbols to be treated as one symbol), and
 - (b) determine whether or not loop sets touch in the algorithm for enumerating higher order loops.

New techniques for handling multi-inputs and multi-outputs are also presented in this report although they have not yet been incorporated into the program SNAP.

^{*}At about the same time the results of this project were disseminated, (3) another symbolic program⁽¹⁾ (by coincidence also called SNAP) whose primary concern is the on-line use for design purposes made its appearance.

II. A GENERAL DISCUSSION OF THE BASIC ALGORITHMS

II-1. Formulating the Signal-Flow Graph (SFG)

a. Data Required

A SFG is generated by SNAP (Symbolic Network Analysis Program) from data specifying the topological structure of the network, the input-output variables, and the characteristics of each network branch. The network topology is described by

- (a) A unique number for each branch, and
- (b) the initial and terminal nodes of each branch as determined by the assigned current direction.

The input to the network must be a single independent voltage or current source and the output requested must be the voltage or current associated with a network branch or the voltage between any two nodes of the network.* Finally, each branch is characterized by

- (a) a symbol which specifies its type, i.e., passive branches: R, G, L, C, Y, Z control sources: VV, VC, CV, CC independent sources: E, I
- (b) a symbol representing the branch name together with the branch value if specified, and
- (c) the branch number of the control (for dependent sources only)

 As an example, consider the network given below (from a paper by A. DeMari⁽¹⁾).

Refer to Appendix A of section III-1 for a discussion on how to handle multi-inputs and multi-outputs.

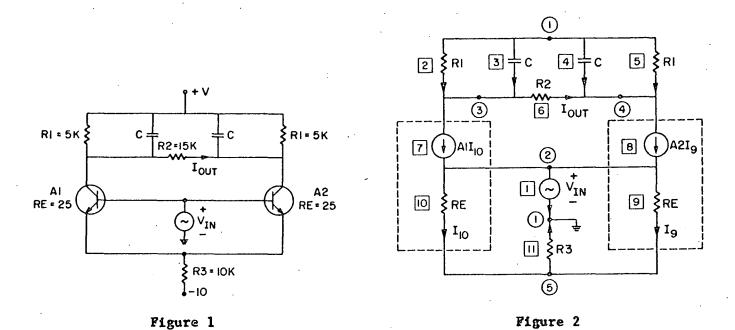
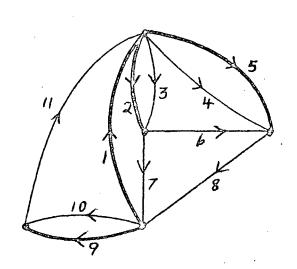


Table 1 (Network Data)

Branch Type	Branch Number	Initial Node	Terminal Node	Symbol	Value	Control
E	1	2	1		2	
R	2	1	. 3	R1	$= 5x10^3$	
С	3	1	3	C	_	
R	5	1	4	R1	$= 5 \times 10^3$	
C	4	1	4	С	. 2	
R	6	3	4	R2	= 15×10 ³	
CC	7	3	2	A1	•	10
CC	8	4	2	A2		9
R	9	2	5	RE	= 25	•
R	10	2	5	· RE	≈ 25	
R	11	5	1	R3	$= 10 \times 10^{3}$	


b. Finding a Tree

The formulation of a SFG starts with the choice of a network tree. The selection of network branches to be used in the tree is made as follows:

Independent voltage sources and controlled voltage sources are the first ones to be used. Then come the passive RLC elements in any order. In choosing the (J+1)th branch, the undirected graph formed by the J branches already selected is tested to determine whether a path exists between the two terminal nodes of the (J+1)th branch. If so, the branch under consideration is disqualified. If not, the (J+1)th branch is added to the tree. Let n be the number of nodes

of the network graph. When n-1 branches are successfully chosen by the above process, we have obtained a tree.

As an example, consider the network of Fig. 2. If, following the selection of the voltage source, the passive branches are examined in the order by which they are listed, the tree shown in Fig. 3 results

Tree branches:

$$b_1 = 1$$
, $b_2 = 2$, $b_3 = 5$, $b_4 = 9$
Links:
 $l_1 = 3$, $l_2 = 4$, $l_3 = 6$, $l_4 = 7$
 $l_5 = 8$, $l_6 = 10$, $l_7 = 11$

Figure 3

It is important to note that the complexity of the SFG and consequently the time required to evaluate the transfer function depends on the tree selected. (2) A brief summary of the rules for choosing a "good" tree is given in Appendix C at the end of Section III-1.

c. Rules for Formulating the Compact SFG

A "compact SFG" is a signal-flow graph whose node variables consist only of tree branch voltages and link currents except when additional nodes are needed for control sources or for the output variable. This type of SFG can be more efficiently evaluated than the so-called primitive SFG which contains one node for the branch voltage and another for the branch current.

The compact SFG is constructed according to the following rules: (An example as derived from Fig. 2, Fig. 3, and Table 1 is given in Fig. 4). Rule (1): For each link $\ell_{\mathbf{k}}$, the unique fundamental circuit $C_{\mathbf{k}}$ containing

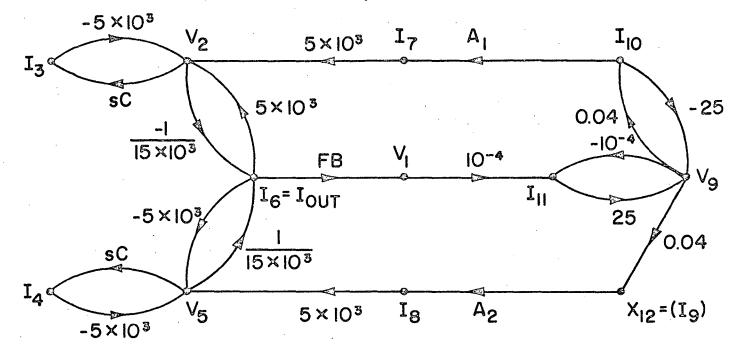


Figure 4: SFG

Table 2 (SFG DATA)

Initial Node	Terminal Node	Exponent of s	Branch Value	Branch Symbol
6	1	0		FB
2	3	1	1	C
3	2	0	-5×10 ³	-
5	4	• 1	1	C
4	5	o	$-5x10^3$	-
2	6	0	$\frac{-1}{15\times10^3}$	
6	2	0	5x10 ³	-
5 .	6	0	$\frac{1}{15 \times 10^3}$	-
6	5	0	-5x10 ³	-
10	7	0	1	A1
7	2	0	5x10 ³	-
9	12	0	.04	•
12	8	0	1	A2
8	5	0	5x10 ³	•
9	10	0	.04	•
10	9	0	-25	e 0
9	11	0	-10 ⁻⁴	••
11	9	0	25	•
1	11	0	10-4	

branches b_i , i=1,2,...,m is found. Two sets of SFG branches can then be created. Set (a): For each passive branch in the tree branch set b_i , i=1,2,...,m, a directed branch in the SFG is formed from node I_k to node V_b with weight equal to the impedance of branch b_i , prefixed with the proper sign (positive, if the directions of l_k and b_i concur in C_k , and negative otherwise).

Set (b): If the link l_k is a passive branch, a directed branch in the SFG is formed from each node V_{b_i} , i=1,2,...,m, to node I_{l_k} , having weight equal to the admittance of link l_k , prefixed with the proper sign (negative, if the directions of l_k and b_i concur in C_k , positive otherwise).

Rule (2): If any of the four types of controlled sources are present, a directed branch is created in the SFG from the controlling variable to the controlled source, having weight equal to the constant of proportionality (g_m , beta, etc.). If the controlling variable is a link voltage or a tree branch current, one more node is added to the SFG to represent this controlling variable X (node X_{12} in Fig. 4 is a node of this type). X is then expressed in terms of the tree branch voltage or link current through a simple immittance relationship.

Rule (3): If the desired output Y is neither a tree branch voltage nor a link current, then one node is added to the SFG to represent Y. Y is then expressed in terms of tree branch voltages or in terms of a link current through a simple immittance relationship.

Rule (4): Finally, the SFG is "closed" by adding a branch with a symbolic weight (FB), directed from the output to the input node.

d. The Gain Formula for "Closed" SFG (4)

The purpose for introducing the closed SFG is because only all orders of non-touching loops need be found as opposed to the evaluation of Mason's formula which required enumerating certain paths as well as loops.

To derive the gain expression for the closed SFG consider first Mason's equation for the transfer function.

$$T = \frac{X_0}{X_1} = \frac{\sum_{i=1}^{m} \sum_{i=1}^{n} \Delta_i}{\Delta}$$

where

 $\Delta = 1 + \sum (-1)^{j} \sum_{k=k,j} is$ the determinant of the SFG k, is the product of the transmittances of the k set of non-intersecting loops of order j.

 P_i is the transmittance product of the ith path between X_i and X_o o Δ_i is the partial determinant obtained from Δ after removal of all loops intersecting the ith path between X_i and X_o .

Let Δ_c be the determinant of the closed SFG. It is then noted that since $\{P_i\}_{i=1}^m$ is the set of all paths from X_i to X_o , the loops present in the closed SFG not present in the original SFG will be precisely $\{(FB)P_i\}_{i=1}^m$ where FB is the symbol assigned to the added branch. Further, since the path FB contains only nodes X_i and X_o which, in turn, are present in every path P_i , $i=1,2,\ldots,m$, it follows that the non-intersecting loop combinations that do not touch the loops $(FB)P_i$, $i=1,2,\ldots,m$ will be precisely those combinations which do not touch the path P_i , $i=1,2,\ldots,m$. It follows that

$$\Delta_{c} = (FB) \sum_{i=1}^{m} P_{i} \Delta_{i} + \Delta$$

Thus, the transfer function can be found by simply sorting the terms of the determinant of the closed SFG.

II-2. Manipulating SFG Branch Weights

Each branch weight in the SFG is of the form

Constant · Symbol · s

If an arbitrary branch has an initial node $X_{\hat{\mathbf{f}}}$, and a final node $X_{\hat{\mathbf{f}}}$, then the three parameters

 $C(X_1,X_f) = constant$

 $S(X_i, X_f) = symbol$

and $E(X_f, X_f) = \text{exponent of } s$

completely define the weight of the branch. After a loop or a set of nontouching loops has been found in the SFG, say by some path-finding technique, it is desirable to combine the weight parameters of each branch in the loop set to form a composite loop set weight. The loop set constant may be easily formed by taking the product of the constants associated with each branch. Similarly, the loop set exponent parameter is readily found by summing the exponents assigned to each branch. However, because computers are not particularly adept at symbol manipulation, it is inefficient with respect to both time and storage to form directly a composite loop set symbol. A much better technique is to convert each branch symbol into a numeric code. These codes are assigned to the SFG branches as follows: Each distinct symbol in the SFG is stored in the array S(j) and assigned a code B^j where B is some base Bs{2,4,...,2^m}. Now for an arbitrary SFG branch having initial node X_i and final node X_i which contains the symbol S(n), the code

$$K(X_4,X_e) = B^n$$

is assigned.

The real value of this coding technique stems from the fact that the composite loop set code formed by summing the codes representing the individual branch symbols can be <u>uniquely</u> decoded provided the number of identical symbols combined into any code is less than B.

As an example of the above concepts for manipulating the SFG branch weights, refer to the SFG shown in Fig. 4. Consider, in particular, the loop defined by the node sequences

$$v_2 - I_3 - V_2$$
 and $V_4 - I_5 - V_4$

Then

composite loop set constant =
$$(-5x10^3)(1)(-5x10^3)(1)$$

= $25x10^6$

and

composite loop set s power = 0 + 1 + 0 + 1 = 2

To find the loop set code, an array of distinct symbols of the SFG and their corresponding codes must be set up.

no symbol
$$\iff$$
 0
S(1) = FB \iff 4⁰
S(2) = C \iff 4¹
S(3) = A1 \iff 4²
S(4) = A2 \iff 4³

Note that because there will be at most two identical symbols in any code, the base 4 was chosen. Using the above codes gives

composite set code =
$$K(V_2, I_3) + K(I_3, V_2)$$

+ $K(V_4, I_5) + K(I_5, V_4)$
= $4^2 + 0 + 0 + 4^2$

Now to decode this number, say in the output, we would write

$$8 = 2(4^{1})$$

$$= (S(2))^{2}$$

$$= c^{2}$$

which is indeed the symbol associated with the loop immittance product. The above coding scheme for manipulating symbols is easily adapted to the computer by incorporating the masking operation .AND. . To determine the number of S(1) type symbols contained in a given code, the .AND. operation is applied to the code and B-1. In general, the number of S(J) symbols is found by dividing (using integer division so as to truncate the remainder) the code used to determine the number of S(J-1) symbols by B and then applying the .AND. operation. For example, consider the loop set previously discussed.

loop set code = 8 = (000000000100)₂

B -1 = 3 = (000000000011)₂

(loop set code).AND.(B-1) = 8.AND.3

Thus, the symbol S(1) = FB is not present. Now divide the loop code by B and repeat the above procedure

This implies C is contained in the code 8 and that its exponent is 2, i.e. $\text{$\rm C}^2$. The process stops when the code is reduced to zero.

Each loop set (of any order) contributes to a term in the network function. As each loop set (of any order) is generated and coded, it is compared with existing terms. If a term with the same symbol code and power of s exists, then the constant of the term is updated by adding to it the constant of the new loop set. Otherwise, a new term is created. Note that the above process is an important step towards reducing the storage requirements.

After all loop sets have been found, the transfer function is complete, and it remains only to transform the symbol code of each term into its corresponding symbol set by the .AND. operation previously described.

II-3. Generating First Order Loops

a. General Description

Let the nodes of the SFG be labelled 1,2,...,N. All first order loops which contain node J (J=1 initially) can be found by conceptually splitting node J into two nodes, one node containing all incoming branch and the other containing all outgoing branches, and then enumerating all paths between these two nodes.

All branches going into node J are then removed and the process repeated for node J+1. Clearly, this procedure will produce all circuits with no duplications.

The problem of efficiently finding all circuits now becomes one of finding paths. The path-finding algorithm utilized by SNAP is based on a routing technique which conceptually resembles that proposed by Kroft (5). However, because our ultimate objective is a flexible user-oriented program, we have chosen to use FORTRAN instead of SNOBOL as Kroft did. A general description of the concepts contained in the algorithm will be given here in addition to a rigorous step-by-step description presented at the end of this section.

Consider the SFG given in Fig. 4. The topological structure of the SFG can be completely described by the following routing table where the entries in the Jth row are the set of all nodes of distance one from node J. Note that the entries of each row are made to decrease as the column subscript M increases. This facilitates modifying the table after all paths through a particular node, say node J, have been found because only the right most non-zero entry of each row must be tested, i.e. if that entry equals J, it is a set to zero. As an example in using the routing table, the following two circuits can easily be shown to compose the complete set of circuits containing node 1.

Routing Table

A particularly important feature of the path-finding algorithm is the method by which each new node generated from the routing table must be tested to prevent loops from being formed. Rather than comparing the prospective node to each node already in the path, it is much more efficient to define the function

 $F(I) = \begin{cases} 1 & \text{if I is contained in the path node sequence} \\ 0 & \text{if I is not contained in the path node sequence} \end{cases}$ on which only one logic test need be made.

Additional insight may be obtained by viewing the path-finding technique graphically. That is, the process by which paths are generated can be observed by applying the following two rules directly to the SFG.

(1) Let node J be the last node added to the path node sequence (initially J = input node). To select the next node, traverse that branch connected to node J that goes to the highest numbered node satisfying both the following requirements:

- a. we did not just back up from this node while applying rule 2, and
- b. this node is not included in the path node sequence.

 Repeat this process until the output node is reached (then store the node sequence and go to rule 2) or until no new node can be found the satisfies (a) and (b) (then go to rule 2)
- (2) Back up along the path just found (this is always possible unless we are at the input node in which case all paths have been found) until a new route can be taken according to rule 1.

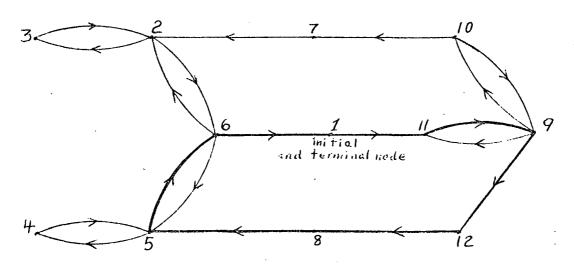


Figure 5

The heavy lines of Fig. 5 show the path which results from applying rule 1 when node 1 is considered both the initial and terminal node. Generating a second path requires backtracking to node 9, then continuing the sequence 10-7-2-6-1. Note that the above graphical technique for listing all paths can be helpful when solving problems by hand.

b. A Detailed Description of the Path-Finding Algorithm (3)

Algorithm PF (Path-finding): This algorithm finds all paths between two nodes of a directed graph (without parallel edges) whose nodes are labelled 1,2,...,N. The only modification necessary to adapt the algorithm to finding

The format used to describe the path-finding algorithm follows the style of $Knuth^{(6)}$.

I: Initial path node

L: Last path node

N: Number of nodes in graph

E,: Number of branches leaving node J

R(J,M): Routing table

C₁: Column counter for the Jth row of the table R

P(V,W): The Vth node in the node sequence of path W

Uu: Number of nodes in path W

F(K): A function used to test whether node K is repeated, and whether the last node is reached.

PF1. (Preliminary)

Set R(J,1), R(J,2),..., $R(J,E_J)$ to the group of E_J nodes of distance one from node J. When using the algorithm to find circuit, made the entries of each row decrease as M increases.

Set
$$R(J,M) \leftarrow \begin{cases} -1 & \text{for } M = E_J + 1 \text{ and } J = I \\ 0 & \text{for } M = E_J + 1 \text{ and } J \neq I \end{cases}$$

Set
$$F(K) \leftarrow \begin{cases} 1 \text{ for } K=I \\ 0 \text{ for } K=J \text{ and } J \neq I, L \\ -1 \text{ for } K=L \end{cases}$$

Set
$$C_J \leftarrow 1$$
 for $J=1,2,...,N$
Set $W \leftarrow 1$, $V \leftarrow 2$, $J \leftarrow I$, $P(1,1) \leftarrow I$

PF2. (Find the next node)

Set
$$P(V,W) \leftarrow R(J,C_J)$$

PF3. (Test R)

IF
$$R(J,C_J)$$
 $\begin{cases} < 0 \text{ stop; all paths have been found} \\ = 0 \text{ set } F(J) & < ---- 0, \text{ go to step PF6} \\ > 0 \text{ go to step PF4} \end{cases}$

PF4. (Test F)

IF
$$F\{R(J,C_J)\}$$
 $\begin{cases} < 0 \text{ path completed; go to step PF7} \\ = 0 \text{ go to step PF5} \\ > 0 \text{ set } C_J \leftarrow C_J + 1; \text{ go to step PF2} \end{cases}$

PF5. (Prepare for next node)

Set
$$J \leftarrow P(V,W)$$
, $F(J) \leftarrow 1$, $V \leftarrow V+1$, go to step PF2

PF6. (Back step)

Set
$$C_J \leftarrow 1$$
, $J \leftarrow P(V-2,W)$, $C_J \leftarrow C_J+1$, $V \leftarrow V-1$, go to step PF2

PF7. (Finish path)

Set
$$C_J \leftarrow C_{J}+1$$
, $P(K,W+1) \leftarrow P(K,W)$, $K=1,2,\ldots,U_W-1$, $W \leftarrow W+1$, go to step PF2.

II-4. Generating Nontouching Loops of Order Two or More

Preliminary results from SNAP indicate that of the following subprograms, (1) finding a SFG, (2) coding and de-coding, (3) enumerating first
order loops, and (4) finding all higher order nontouching loops, the last
will generally require the most time unless the network contains many distinct
symbols in which case subprogram (2) may dominate. It is therefore necessary
to exercise considerable care in developing an algorithm for finding all
orders of nontouching loops.

In general, to find loop sets of all orders, some comparison between the node sequences of the different loops must be made. A brute force technique is simply to store all the node sequences of the first order loops and to find nontouching loops by direct comparison of the nodes contained in the loops. Of course, storage is also needed to indicate the loops contained in some of the higher order combinations, but this storage is necessary even in the more efficient techniques which follow.

The above method is improved considerably if instead of directly comparing the nodes of loop A and loop B to determine if they touch, a function F(I) is defined as

and then tested as follows:

If
$$F(J)$$
 =0 all $J \in \{\text{nodes in loop B}\} \implies \text{loops do not touch}$
=1 any $J \in \{\text{nodes in loop B}\} \implies \text{loops touch}$

For those computers which can accommodate the .AND. operation (or equivalent), the following coding technique reduces the number of logic

Although the program was correct, the algorithm was incorrectly described in reference (3).

comparisons needed to determine if two loops touch to one and, perhaps what is even more important, requires only a single code be stored for each first order loop instead of the complete node sequence. As each first order loop is generated, it is assigned an integer code whose binary representation shows the set of nodes in the loop. For example, if loop A contains the nodes {11, 9, 12, 8, 5, 6, 1} and loop B contains the nodes {2,6}, then the codes are

$$A = (110110110001)_2 = 3505$$

$$B = (000000100010)_2 = 34$$

To determine whether the two loops touch or not, the masking operation .AND. is used. Thus,

(A) .AND. (B) =
$$(000000100000)_2 \neq 0$$

The result is not zero, indicating that loops A and B touch.

Using the coding scheme the complete set of nontouching pairs of loops is found and stored in the one dimension array N. Let n = number of first order of loops. Then

$$\{N(1),N(2),...,N[P(1)],N[P(1)+1],...,N[P(2)],N[P(2)+1],...,N[P(3)], \\ N[P(3)+1],...,N[P(n-1)],N[P(n-1)+1],...,N[P(n)] \}$$

is the complete set of nontouching pairs of loops, where the

Note that the array P is simply used to partition the array N such that the set $\{N[P(i-1)+1],N[P(i-1)+2],...,N[P(i)]\}$ does not touch loop i.

Example: (Consider the SFG of Fig. 4)

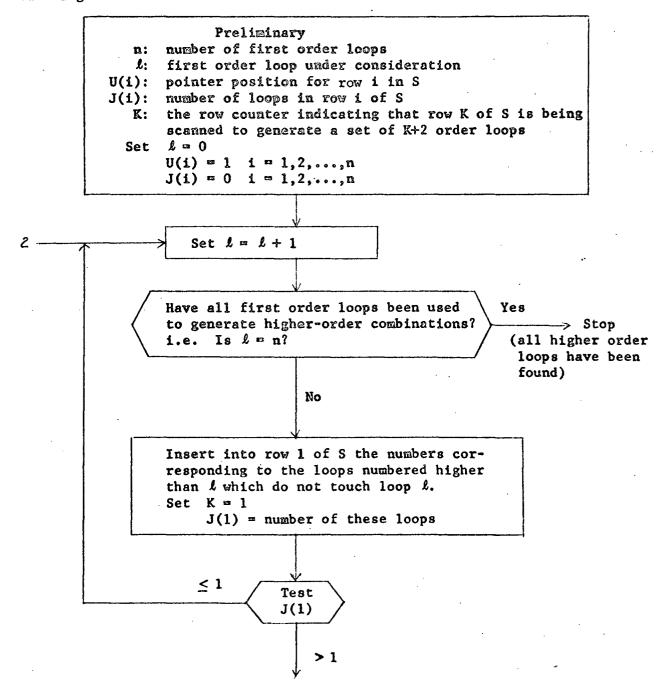
The first order loops are

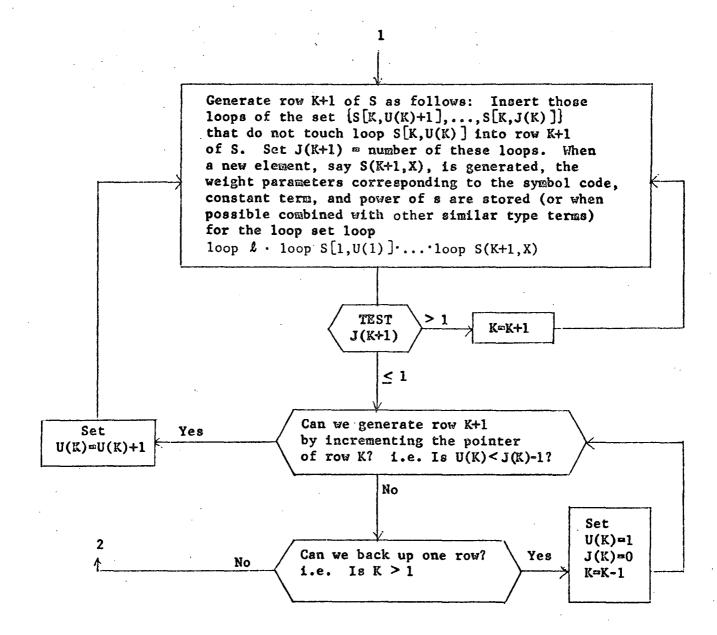
loop	node sequence
1	1-11-9-12-8-5 -6-1
2	1-11-9-10-7-2-6-1
3	2-6-2
4	2-3-2
5	4-5-4
6	5~6 ~ 5
7	9-11-9
8	9-10-9

To find the array of nontouching pairs P, SNAP codes the above loops and proceeds to use the .AND. operator. The results are

$$N = \{4,5,5,7,8,5,6,7,8,7,8,7,8\}$$

and
$$P(1)=1$$
, $P(2)=2$, $P(3)=5$, $P(4)=9$, $P(5)=11$, $P(6)=13$, $P(7)=13$, $P(8)=13$.


To systematically continue the process, an array S is created from which all higher order loop sets (2 or more) not touching loop & can be found. By incrementing & from 1 to n, all higher order loops will then be enumerated.


Let
$$S(1,1)S(1,2)...S[1,U(1)]...$$
 $S[1,J(1)],0,...$ $S[2,U(2)+1]...S[2,J(2)],0,...$ $S[K,1)S(K,2)...S[K,U(K)]...S[K,J(K)],0,...$ where $S(1,1) = N[P(L-1)+1]$ $S(1,2) = N[P(L-1)+2]$ \vdots $S[1,J(1)] = N[P(L)]$

and where the entires (loop numbers) of row $M(M \ge 2)$ are those loops in the set $\{S[M-1,U(M-1)+1],S[M-1,U(M-1)+2],...,S[M-1,J(M-1)]\}$ which do not touch the loop S[M-1,U(M-1)].

The arrows shown in the array S given above are referred to as "pointers". Note that U(J) indicates the position of "pointer" of the J^{th} row. Example: U(3) = 5 means the pointer of row 3 is currently located at the 5^{th} column.

The procedure for finding all higher order loop combinations is given in the following flow chart:

Example:

From the preceding example,

$$N = \{4,5,5,7,8,5,6,7,8,7,8,7,8\}$$

and

$$P(1) = 1$$
, $P(2) = 2$, $P(3) = 5$, $P(4) = 9$, $P(5) = 11$

$$P(6) = 13, P(7) = 13, P(8) = 13$$

Arrays N & P are more easily interpreted by setting up the following table:

Table 3.

loop J	loops numbered higher than J that do not touch loop J
1	4
2	5
3	5,7,8
4	5,6,7,8
5	7,8
6	7,8
` 7	· <u>•</u>
8	•

The sequence for producing the higher order loops is as follows:

100p 1

loops not touching loop 1 are inserted into first row of S (see Table 3)

100p 3

S array

Output

5 7 8 0 0

loop 5 does not touch loop 7 or loop 8 (this is determined by comparing loop codes--see V section II-4)

5 7 8 0 7 8 0 0 0 0 0 0 0 0 0 0

loop 3 loop 5 loop 7
loop 3 loop 5 loop 8

loop 7 touches loop 8; thus, there is no 3rd row. Further if the pointer of row 1 is incremented by 1, no new 2nd row can be created. Thus, we are done with loop 3,

100p 4

S array

Output

```
5 6 7 8 0 0 0
```

loop 5 does not touch loop 7 or loop 8

loop 7 touches loop 8; thus, there is no 3rd row. Increment pointer of row 1.

loop 4.loop 5.loop 7
loop 4.loop 5.loop 8

```
loop 6 does not touch loop
7 or loop 8
                                                   100p 4.100p 6.100p 7
                                                  loop 4.100p 6.100p 8
           incrementing pointers give no additional third order
          loops
100p 5
      S array
                                                  Output
                                                  no 3<sup>rd</sup> order loops
         loop 7 touches loop 8
100p 6
      S array
                                                  Output
                                                  no 3<sup>rd</sup> order loops
         loop 7 touches loop 8
100p 7
                                                  Output
      S array
                                                  no 3<sup>rd</sup> order loops
      [0]
100p 8
      S array
                                                  Output
                                                  no 3<sup>rd</sup> order loops
      [0]
```

III. USER'S GUIDE

III-1. Information Needed by User

Program: SNAP (Symbolic Network Analysis Program)

Purpose: To obtain the network functions* $\frac{V_{out}}{V_{in}}$, $\frac{V_{out}}{I_{in}}$, $\frac{I_{out}}{V_{in}}$, or $\frac{I_{out}}{I_{in}}$ as a ratio of two polynomials of the following type:

(1) all network element values are represented by symbols (the symbols need not all be different),

Examples:
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{s^2 LRC}{s^2 2 LRC + s(L+R^2C) + R}$$

$$\frac{V_{out}}{V_{in}} = \frac{ZYR}{2ZYR + Z + R^2Y + R}$$

(2) some element values are specified numerically, some symbolically,

Example:
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{s^2 R}{s^2 2R + s(.5 \times 10^6 + 150 R^2) + .75 \times 10^8 R}$$

(3) all element values are given numerically,

Example:
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{\frac{2}{s^2 + 2 \times 10^4 \text{s} + .75 \times 10^8}}$$

Description: Program SNAP is designed to handle lumped, linear, time invariant networks** containing the following type components:

- (1) two-terminal circuit elements -- resistance, inductance, and capacitance.
- (2) two-terminal networks described by an admittance or impedance parameter.

Refer to Appendix A at end of this section for a technique of handling multi-output functions.

^{**}See Appendix B for a brief list of additional limitations on the size and type of network allowed.

- (3) all four types of controlled sources (Note: Mutual inductance, ideal transformers, gyrators, etc., can be modeled with elements in (1) and (3))
- (4) one independent source; see Appendix A for a technique of handling multi-input networks.

Network Data Required: After the network components have been modeled by the type elements allowed, the branches and nodes are to be numbered consecutively starting with 1 and reference directions for each branch current are to be chosen. The following gives the sequence of data cards needed to describe the network.

CARD 1

Columns

Contents

1-72

Title card (all 72 columns are reproduced in output)

CARD 2

Columns

Contents

1-5
(right adjusted)

Number of nodes in the network

6-10

(right adjusted)

Number of branches in the network

The following three entries are optional.

right (adjusted)	Number base of symbol codes (automatically set to 8 if left blank)
21	l if a description of the SFG is to be listed, blank otherwise
22	l if all loops (circuits) in the SFG are to be listed (node sequence), blank otherwise

CARD 3

Columns

Contents

1-5 right Network branch number of source (adjusted) 6-10 Network branch number associated with output (leave blank right (adjusted) if output is a voltage across more than one branch) 11-15 Node number corresponding to the positive output voltage right terminal (these columns can be left blank if columns 6-10 (adjusted) are not blank) 16-20 Node number corresponding to the negative output voltage right terminal (these columns can be left blank if columns 6-10 (adjusted) are not blank)

CARDS 4 thru (b+3)

(b = number of network branches)

- Note 1: Each card describes one network branch (element).
- Note 2: If output is a voltage (current) associated with a particular branch, then the data card describing this branch should be entered first (last) among the branch data cards (cards 4 thru (b+3)) to insure that this branch will be chosen as part of the tree (cotree).
- Note 3: When a large number of branches share one common terminal, it is better to place these branches first starting with card 4 (card 5 if note 2 applies). The reason is given in Appendix C at the end of this section.

Columns

Contents

1-2 Element type; voltage source 1eft I: current source (adjusted) G: conductance R: resistance L: inductance C: capacitance **Z**: impedance Υ: admittance CC: CV:

CC: current controlled current source CV: current controlled voltage source VC: voltage controlled current source

VV: voltage controlled voltage source

	e.	-31-
·. ·	Continued Columns 3-5 (right (adjusted)	Contents Element numberall elements of the network must be assigned a distinct number (positive integer). For greatest efficiency, the numbering should be consecutive.
	6-10 (right (adjusted)	Initial nodethis is relative to the arbitrarily chosen current direction.
	11-15 (right (adjusted)	Terminal nodethis is relative to the arbitrarily chosen current direction.
	17-19 (right (adjusted)	Element symbolthe element's value, if not specified, is represented by this symbol.
	20	Equal sign (=) if element is to be assigned a value. Leave blank if element value is to be represented in symbolic form.
	21-32 (right (adjusted)	Element value (if known)Format is El2.5. Units should be compatible with element type as specified in columns 1-2; for example, R is expressed in ohms, G in mhos.
	33-35 (right (adjusted)	If element is a dependent source, enter the element number of its control.

An Example: We wish to find $_{\rm out}^{\rm I}/{\rm V_{in}}$, Keeping Al, A2, and C as symbols.

FIGURE I. ORIGINAL NETWORK.

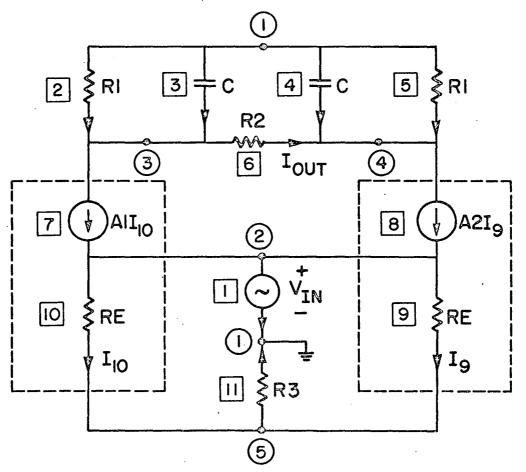


FIGURE 2. MODELED NETWORK.

DATA DECK

R	11	5	1	R3=	10.E3
R	10	S	5	RE=25.	
R	9	s	5	RE=25.	
CC	8	4	S	A2	9
CC	7	3	2.	A1	10
R	6	3	4	R2≌	15,E3
C	4	· 1	4	C	
R	5	1	4	R1=	5.E3
C	3	1	3	C .	
R	5	1	3	R1=	5.E3
E	1	2	1		-, - •,
•	1	6			
	5	11		11	•

MANAGEMENT DIFFERENTIAL AMPLIFIER HERRICHTER LE

TABLE 1. Input Data as Reproduced in Program Output.

NUMBER OF NODES= 5
NUMBER OF BRANCHES= 11
ELEMENT NUMBER OF SOURCE= 1
ELEMENT NUMBER ASSOCIATED WITH OUTPUT= 6
BASE FOR SYMBOL CODES= 8

NETWORK

ELEMENT	ELEMENT	INITIAL	TERMINAL	ELEMENT	ELEMENT	ELE	MENT	NO.
TYPE	NUMBER	NODE	NODE	SYMBOL	VALUE	OF	CONTR	ROL
E	1	2	1	-0	•		- 0	
R	2	1 .	3	R1 = 5	.00000E+	03	-0	
С	3	1	3	C = 0	•		-0	
R	5	1	4	R1 = 5	.00000E+	03	- - 0 ∫	
C	4	1	4	C = 0	•		- 0	
R	6	3	4	R2= 1	.50000F+	04	~ ()	
CC	7	3	S	A1 -0	•		10	
CC ,	8	4	2	VS -0	•		9	
R	9	2	5	BE= 5	•50000F *	01	- 0	
R	10	2	5	RE= 2	.50000F+	01	⇔ ()	
R .	11	5	1	R3 = 1	.00000E+	04	⇔ ∩	
			TREE	SELECTE	D			
E	1	2	1	-0	•		~ 0	
· R	2	1	3	R1= 5	• 00000F.*	03	49 0	
R	. 5	1	4	R1 = 5	+300000E+	03	- 0	
R	9	5	5	RE= 2	•50000E+	01	~ ()	*

TABLE 2. Program Output Information Showing Signal-Flow Graph,

Circuits, and Execution Times.

SFG

INITIAL	TERMINAL	EXPONENT	BRANCH	BRANCH	1 IF SYMBOL	1 IF SYMBUL
NODE	NODE	OF S	VALUE	SYMBOL	IS INVERTED	IS USED
6	1	0	-1.00000E+00		Ü	1
2	3	1	1.00000E+00		0	1
3	2	0	-5.00000E+03	RI	0	. 0
5	4	1	1.00000E+00) с	0	1
4	5	0	-5.00000E+03	RI	0	0
2	6	0	-6.66667E-05	R2	1	0
6	2	0	5.00000E+03	RÌ	0	0
5	`6	0	6.66667E-05		1	, 0
6	5	0	-5.00000E+03	Rl	O	. 0
10	7	0	1.00000E+00	41	()	1
7	2	0	5.00000E+03	Rl	0	. 0
9	12	0	4.00000E=02		1	0
12	8	0	1.00000E+00	۶۵ (0	1
8	5	. 0	5.00000E+03		U	0
9 -	10	0	4.00000E-02	RE	1	0
10	9	0	-2.50000E+01	RE	O	0
9	11	0	-1.00000E-04		1	0
11	9	0	2.50000E+01	RE	. 0	0
1	11	. 0	1.00000E-04		1	0

•252

TIME FOR FORMULATING SIGNAL FLOW GRAPH IN SECONDS

CIRCUITS

	•						
NO •	NODE LI	ST					
1	1 11	9	12	8 5 7 2	6	1	
2	1 11	9	10	7 - 2	? 6	1	
3	2 6	2					
4	2 3	2					
5	4 5	4					
6	5 6	5					
7	9 11	9					
8	9 10	9	_			_	
TIME FOR F	INDING			FIR	RST	ORDER	LOOPS
IN SECONDS		•	046				
TIME FOR F	INDING		1	9 SE	TS	0F	
NONTOUCHIN	G LOOPS,	IN	SEÇO	NDS			.027
							- 2. ,

TIME FOR DECODING SYMBOLS IN SECONDS

TABLE 3. Network Transfer Function and Total Execution Time.

```
NUMERATOR POLYNOMIAL

= (3.33333310^{-5} + .166667sC)(A2-A1)

COLUMN

SYMBOL FOR GIVEN COLUMN

\begin{vmatrix} A2 & / & 1 \\ A1 & / & 1 \\ C & A2 & / & 1 \\ C & A1 & / & 1 \end{vmatrix}

POWER
```

DENOMINATOR POLYNOMIAL

 $= 3.3375 + 2.67 \times 10^{4} \text{sC} + 5.00625 \times 10^{7} \text{s}^{2} \text{C}^{2}$

POWER

OF S

CONSTANT COEFS. IN THE POLYNOMIAL

COLUMN 1

COLUMN 2

COLUMN 3

EXECUTION TIME IN SECONDS,

. 509

AUGUST 1970 VERSION OF SNAP

APPENDIX A

A Sorting Technique for Handling Multi-Input, Multi-Output Networks.

Multi-Inputs

Program SNAP (the August 1970 revision) permits only one independent source branch. However, networks containing more than one source can easily be handled with the following technique. Let W_i i = 1,2,...,n represent a set of n independent sources, either voltage or current. Assign W_1 as the permitted independent source and make W_2 , W_3 ,..., W_n dependent sources which are dependent on W_1 with proportionality factors

$$k_2 = \frac{W_2}{W_1}$$
, $k_3 = \frac{W_3}{W_1}$,..., $k_n = \frac{W_n}{W_1}$ respectively

Only the numerator polynomial in the output will contain these parameters thus permitting the user to easily put the output function into the form

$$\frac{W_{\text{out}}}{W_{1}} = \frac{P_{1} + P_{2}k_{2} + P_{3}k_{3} + \ldots + P_{n}k_{n}}{\Delta}$$

where Δ and P_i i = 1,2,...,n are polynomials. The output function can then be written

$$W_{\text{out}} = \frac{P_1 W_1 + P_2 W_2 + \ldots + P_n W_n}{\Delta}$$
 (1)

Although at present SNAP does not give the output function in the form of Eq. (1) directly, only a few program modifications are necessary to effect such a result. For example, the program could internally create a new input node, I_{new} , of the SFG and then make each independent source, W_i , dependent on I_{new} with weight P_i as shown in Fig. 1 below.

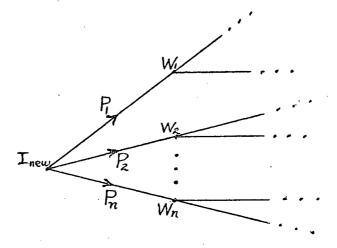


Figure 1

Multi-Outputs

The following technique can be used to obtain more than one output function in a single computer run: Augment the original network by appending one end of a series connection of dependent voltage sources to the given network such that

- (a) to each branch current, I_j , desired as an output, there corresponds a dependent voltage source which depends on I_j and has symbolic weight I_{oj} ,
- and (b) to each voltage V_{OAB} desired as an output, there corresponds a set of the dependent voltage sources each dependent upon a voltage across one of the branches in the path between nodes A and B and all having symbolic weight V_{OAB} .

By specifying the output to be the voltage across the entire series connection of dependent voltage sources, outputs \mathbf{I}_j and \mathbf{V}_{AB} will be those output terms which contain \mathbf{I}_{oj} and \mathbf{V}_{OAB} respectively. Only a few modifications of the present version of SNAP would be necessary to have the program internally perform the network augmentation described above (at present, the user must do the augmenting).

As an example, Fig. 2 illustrates the network augmentation needed to find the voltage V_{14} and current I_5 for the given bridge network in one computer run.

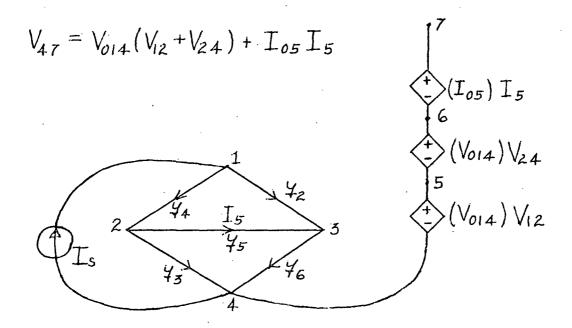


Figure 2.

Appendix B

A Brief List of Limitations on the Size and Type of Network Allowed

	Version:		
	August, 1970 Version:	Version:	Remarks (on August 1970 version)
Number of network branches	35	,	SNAP cannot handle all networks having.
			35 branches or less. Other factors such
			as time considerations, SFG character-
			istics (number of higher order loops,
			for example), and number of network
		-	symbols to name a few can further limit
•			the size of the network.
Maximum number of elements			This number can be increased to 2 ⁿ -1 by
that can be represented by			increasing the symbol code base used to
the same symbol			2^n , $n > 3$, on the input data card 2.
Number of different powers	15		Sufficient for networks containing no
of s			more than 15 reactive elements.
Retimate of the maximum	12		This restriction results from the fact
number of distinct network	! !		that SNAP can contain no more than 150
symbols permitted			different symbol combinations in the
			output.

APPENDIX C

Selecting a "Good" Tree

The network tree used to generate the SFG has a very significant effect on the number of loops and higher order loops present in the SFG. The loop enumeration and evaluation, in turn, often determines the time and storage needed by a computer to solve a given network. The ladder network of Figure 1 together with Table 1 illustrated the interrelationship between the tree selected, the number of loops (all orders), computer execution time, and computer storage.

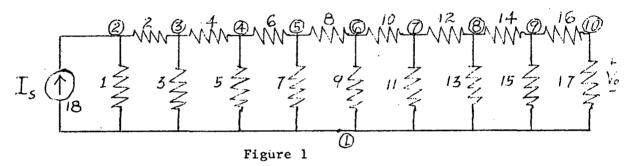


Table 1

Tree Branches	Number of loops	Number of higher order loops	Time required to find V _O /1
Star tree: 1,3,5,7,9, 11,13,15,17	17	2567	1.55 seconds
1,2,4,7,9,11,13,15,17	38	8096	3.93 seconds
1,2,4,6,9,11,13,15,17	117	19719	9.42 seconds
1,2,4,6,8,11,13,15,17	476 (storage : order exc		

Unfortunately, choosing the "best" tree, that is, a tree which will minimize the number of loop combinations of all orders is a very involved process. See reference 2 and 7 for a detailed discussion of this problem.

For most networks, however, a tree that will result in a reasonable amount of execution time and computer storage can be selected by applying one of the following rules (rule 2 results in a better tree than rule 1) $\frac{\text{Rule 1}}{\text{Rule 1}}: \text{ Select a tree in which as many branches as possible form a star,}$ that is, the branches share a common node. Modify this tree, if necessary, to include any branch which has two or more branches in parallel with it. $\frac{\text{Rule 2}}{\text{k}}: \text{ Let T}_{k} \text{ be some tree (not necessarily the best) of the network}$ graph. For each link ℓ_{i} of the graph, define ℓ_{i} as the number of tree branches which form a circuit with ℓ_{i} . Then form the sum

$$S_{T_k} = \sum_{i=1}^{L} B_{i}$$
 where L = number of links in the graph having T_k as a tree.

Select that tree, say T_{i} , which satisfies the inequality

$$S_{T_{j}} < S_{T_{k}}$$
 $k = 1, 2, ..., N$ where $N = number of trees$

The example given in section III-1 uses a tree, T_j , having $S_{T_i} = 11$.

The tree generated internally by program SNAP includes all voltage sources together with those passive branches read in first (starting with input data card 4) which complete the tree. Thus, to have SNAP select the tree that has been chosen by the user, it is necessary that the user's tree include all voltage sources and that all its passive branches be listed first starting with input data card 4.

III-2. Modifying the Dimension of Arrays

In order to make SNAP applicable to many different type networks, a flexible yet simple procedure is needed for modifying the dimension of the arrays. For example, storage requirements for networks containing many symbols will be determined by the number of symbols, symbol codes, etc., whereas the storage needed for networks having no symbols will be determined by the number of loops, nontouching loops of all orders, and related network characteristics. Because it is not possible to determine apriori reasonable bounds for all the network characteristics, error diagnostics have been built into the program to inform the user as to which arrays have been inadequately dimensioned. As a result, the technique for adjusting the array dimension, in SNAP can be outlined as follows:

- (1) Check that those network characteristics which can be determined before running the program are within the specified limits. These limits are listed following the dimension statements of the main program for convenient reference.
- Run the program. If an array dimension is exceeded an error message will result which specifies the network characteristic involved. For example, if the SFG of a given network has an excessive number of circuits, the message "No. of circuits exceeds limit--increase dimensions containing NPAC" will result. The definition of NPAC (number of paths and circuits) are found immediately following the array dimensions in the main program. It is important to point out that a computer run may continue to completion even if the dimension of some arrays have been exceeded (an error message is still given, however). In this situation, the results cannot be considered reliable.

(3) Once it has been ascertained by (1) and (2) that dimension modifications are in order, refer to the next few pages to determine the arrays associated with the network characteristics of interest. Increase the dimension of all the arrays indicated by say 20% (several runs may be necessary to achieve adequate program dimensions). Then update the value of the parameter (NPAC, for example) corresponding to the network characteristic involved. This parameter is used throughout the program (as limits on DO loops etc.) thereby making it unnecessary to do any additional program modifications.

NBN = Number of Network Branches (Presently 35)

PROGRAM MAIN

IG(NBN),	KODES (NBN),	KODE (NBN, NBN)
SMBOL(NBN),	KONC(NBN),	IXPO(NBN, NBN)
IFLOW(NBN),	N(NBN, NBN),	CONS (NBN, NBN)
I.T(NBN)	NP(NBN)	•

L(NDN), NP(NDN),

SUBROUTINE SFG

JROW(NBN),	TYPB(NBN),	IQUALX(NBN),	JBX(NBN)
NP(NBN),	JB(NBN),	VALX(NBN),	LBX(NBN)
IVV(NBN),	LB(NBN),	NUMLX(NBN),	IB(NBN, NBN)
NUML(NBN),	MSYM(NBN),	INTRE (NBN),	NS(NBN, NBN)
ICV(NBN),	IQUAL(NBN),	NOTREE (NBN),	NF(NBN, NBN)
INTREE (NBN),	VAL(NBN),	TYPX(NBN),	
LINC(NBN),	SYM(NBN),	NUMX(NBN),	

SUBROUTINE FTREE

TYPX(NBN),	INTRE (NBN),	NF(NBN, NBN)
JBX(NBN),	NOTREE (NBN),	
IRY (NRN)	NP (NRN)	

SUBROUTINE TREP

JX(NBN),	JMEM(NBN),	NF(NBN, NBN)
NP(NBN).	KMEM(NBN)	•

NBG = Number of Branches in SFG (Presently 100)

PROGRAM MAIN

NFIRST(NBG), SYMBUL(NBG), NEST(NBG) NLAST(NBG), MIX(NBG), TYPE(NBG)

IXPON(NBG), CVAL(NBG),

WEIGHT(NBG), KONSO(NBG),

SUBROUTINE SFG

NFIRST(NBG), MAPY(NBG), SYMBUL(NBG)

NLAST(NBG), KONSO(NBG), MIX(NBG)

IXPON(NBG), NEST(NBG), CVAL(NBG)

WEIGHT(NBG), TYPE(NBG),

NPAC = Number of Paths Plus Circuits (Presently 300)

PROGRAM MAIN

CONST(NPAC), MAPO(NPAC), JAC(NPAC)

KODET(NPAC), NOCTOT(NPAC), NPCODE(NPAC)

IXPOT(NPAC), NUP(NPAC),

NTO = Number of Terms in Output (Presently 150)

PROGRAM MAIN

NA(NTO),

POLYU(NEXPS,NTO),

SEMPON(NTO, NSPT/2)

NB(NTO),

POLY(NEXPS,NTO),

SEMPOD(NTO, NSPT/2

KSORT(NTO),

SIMBON(NTO, NSPT/2),

ITOP(NTO),

SIMBOD(NTO, NSPT/2)

SUBROUTINE ARRAY

KSORT(NTO),

POLY (NEXPS, NTO)

SUBROUTINE DECODE

ITOP(NTO)

NSPT = Number of Symbols per term in Output (Presently 20)

PROGRAM MAIN

KONS(NSPT),

KODF (NSPT),

SEMPON(NTO, NSPT/2)

KODI (NSPT), SIMBON(NTO, NSPT/2),

SEMPOD (NTO, NSPT/2)

SEMBOL(NSPT), SIMBOLD(NTO, NSPT/2),

SUBROUTINE FTREE

KCOL(NSPT)

SUBROUTINE DECODE

SEMBOL(NSPT), KODF(NSPT),

KODI (NSPT)

NEXPS = Number of Different Powers of s (Presently 15)

PROGRAM MAIN

MSORT(NEXPS), POLYU(NEXPS, NTO), POLY(NEXPS, NTO)

SUBROUTINE ARRAY

MSORT(NEXPS), POLY(NEXPS, NTO)

NRI = Maximum Number of Nontouching Loops (Presently 15)

PROGRAM MAIN

ISET(NRI, NCI)

NCI = Maximum Number of Loops Not Touching any Given Loop (Presently 100)

PROGRAM MAIN

ISET(NRI, NCI)

NEON = Number of Nontouching Paris of Loops (Presently 1200)

PROGRAM MAIN

NOTCH (NEON)

NRS = Number of Repeated Symbols (Presently 9)

PROGRAM MAIN

STAR(NRS)

IV. PROGRAMMER'S GUIDE

IV-1. Definitions

- CONS(J.L) = WEIGT(I) FOR BRANCH I OF THE SFG WHERE

 J= FIRST(1) . L=NLAS!(I)
- CONST(I) = COMPOSTIE CONSTANT ASSOCIATED WITH CIRCUIT I. IT IS FOUND BY TAKING THE PRODUCT OF THE CONSTANT VALUES OF EVERY SEG BRANCH IN CIRCUIT I
- CVAL(NUMC) = VALX, LINK) #HERE NUMC = NUMX (LINK)

 (USED ONLY FOR NETWORK BRANCHES NOT IN THE TREF)
- TR(LF.JF)=IB(JF.LF)=NUMC WHERE JF=JB(NUMC) AND LF=LB(NUMC)
 AND NUMC IS A NETWORK TREE BRANCH NUMBER (ASSIGNED BY USER)
- IFLOW(K) = A FLAG. FOR THE PURPOSE OF CHECKING WHETHER NODE K IS REPEATED AND WHETHER THE LAST NODE IS REACHED
- TG(L)=SYMBOL CODE ASSIGNED TO THE SFG BRANCHES BAVING TERMINAL NOUF L
- INTRF(K)=I. THE I-TH NETWORK BRANCH IN THE DATA BRANCH LIST TS CHOSEN AS THE K-TH BRANCH OF THE NETWORK TREE
- INTREE (NUMC) = 1 TF THE NETWORK BRANCH NUMBERED NUMC BY THE USER IS SELECTED FOR THE TREE; 0 OTHERWISE
- IQUAL (NUMC) = IQUALX(I) WHERE NUMC=NUMX(I)

 (USED ONLY FOR NETWORK TREE BRANCHES)
- IQUALX(I) = EQUAL SIGN(=) TF 1-TH NETWORK BRANCH IN THE DATA BRANCH LIST HAS A NUMERICAL VALUE. LEFT BLANK IF I-TH BRANCH IS TO BE REPRESENTED BY A SYMBOL
- ISET(J.1) #THE INTEGER ARRAY WHICH TOGETHER WITH THE ARRAY NOTCH CAN BE USED TO FIND ALL SETS OF NUNTOUCHING LOUPS OF ORDER GREATER THAN 2
- TTOP(JC)=1 IF THE TERMS IN COLUMN JC OF THE ARRAY POLY BELONG TO THE NUMERATOR OF THE OUTPUT TRANSFER FUNCTION. O THE THEY BELONG TO THE DENOMINATOR
- IVV(M) = NETWORK BRANCH NUMBER OF THE M-TH VOLTAGE CONTROLED VOLTAGE SOURCE IN THE DATA BRANCH LIST
- TXPO(J.L)=IXPON(I) FOR BRANCH I OF THE SEG WHERE J=NFIRST(I). L=NLAST(I)
- TXPON(I)=FXPONENT OF S ASSOCIATED WITH THE VALUE OF THE SEG BRANCH I
 TXPOT(I)=COMPOSTIE EXPONENT OF S FOR CIRCUIT I. IT IS FOUND BY ADDITING
 THE S POWERS ASSOCIATED WITH EACH BRANCH IN CIRCUIT I
- JAC (J) = NUMBER OF NONZERO ENTRIES IN ROW J OF ISET
- JB(NUMC) = JBX(I) WHERE NUMC=NUMX(I)
 - (HSED ONLY FOR NETWORK TREE BRANCHES)

- JAX(I)=INITIAL NODE OF THE I-TH NETWORK BRANCH IN THE DATA BRANCH LIST
- JMFM(I)=THE ROW OF THE ROUTING MATRIX FROM WHICH THE I-TH NODF IN THE PATH SEQUENCE WAS TAKEN
- JROW(LF)=THE NUMBER OF NON-ZERO ENTRIES IN ROW LF OF THE ARRAY NF JX(I+1)=NP(I)
- KBASIS=NUMBER BASE OF THE SYMBOL CODES. THAT IS: THE SEG CONTAINS KOD DISTINCT SYMBOLS: SEMBOL(K).K=1.2;...*KOO: NOT INCLUDING THE LAP VARIABLE S: WHERE SEMBOL(K) IS ASSIGNED THE CODE KBASIS**K
- KHOL=COUNTER USED TO FIND THE NUMBER OF LOUPS OF ORDER > OR GREATER KIKEA ROW COUNTER OF THE MATRIX POLY
- KMEM(I)=THE COLUMN OF THE ROUTING MATRIX FROM WHICH THE I-TH NODE IN THE PATH SEQUENCE WAS TAKEN
- KODE (J.) = CODE REPRESENTING THE SYMBOL OF THE SEG BRANCH HAVING J AS AN INITIAL NODE AND L AS THE TERMINAL NODE
- KODES(J)=24+(J-1) WHEREJ IS A NODE OF THE SEG
- KODET(I)=COMPOSITE CODE ASSOCIATED WITH CIRCUIT I. THIS CODE PEPRESEN THE SET OF SYMBOLS CORRESPONDING TO THE SET OF SEG BRANCHES CONTAINED IN CIRCUIT I
- KODF(NZ) IS THE MULTIPLICITY OF THE SYMBOL CORRESPONDING TO THE CUDE KODI(NZ)
- KODI(NZ) .NZ=1.2....IZ IS THE SET OF INDIVIDUAL SYMBOL CODES THAT MAKE UP THE COMPOSITE CODE KSORT(JZ)
- KONC(J) = COLUMN COUNTER FOR ROW J OF THE ROUTING MATRIX N(J.K)
- KONS(KOZY)=1 IF THE SYMBOL HAVING CODE KOZY IS NOT AN INVERSE SYMBOL A
 O IF THE SET OF SYMBOLS CORRESPONDING TO THE COMPOSITE CODE
 KSORT(J) RELONGS TO THE DENOMINATOR POLYNOMIAL
- KONSO(I)=1 IF SYMBOL OF THE SFG BRANCH I=SYMBUL(I). O IF SYMBOL OF THE SFG BRANCH I=1/SYMBUL(I)
- KSORT(K)=THE CODE ASSIGNED TO COLUMN K OF THE MAIRIX POLY LB(NUMC)=LBX(I) WHERE NUMC=NUMX(I)
 - (USED ONLY FOR NETWORK TREE BRANCHES)
- LBX(I)=TERMINAL NODE OF THE I-TH NETWORK BRANCH IN THE DATA BRANCH LIST
- LILEA COLUMN COUNTER OF THE MATRIX POLY
- LINC(NUMC)=1 IF THE NETWORK BRANCH NUMBERED NUMC BY THE USER IS NOT IN THE TREE, O OTHERWISE
- LIST=NUMBER OF DIRECTED BRANCHES IN THE SFG
- LISTC=1 IF ALL CIRCUITS OF THE SFG ARE TO BE LISTED IN THE PRINTOUT.

 0 OTHERWISE
- LISTG=1 IF SFG INFORMATION(BRANCH SYMBOLS.WEIGHTS ETC.) ARE TO BE LISTED IN THE PRINTOUT. 0 OTHERWISE
- LISTP=1 IF ALL PATHS FROM NODE NIN TO NODE NUUT ARE TO BE LISTED IN THE PRINTOUT: 0 OTHERWISE
- LT(J)=NUMBER OF POSITIVE ENTRIES IN ROW J OF N(J+K)
- MAPO(NIP) = NOCTOT(NIP) = NOCTOT(NIP=1) WHICH EQUALS THE NUMBER OF LOOPS NOT TOUCHING LOOP NIP
- MIX(I)=MAPPING OF THE SFG BRANCH LIST INTO A LIST SATISFYING ONE OF THE FOLLOWING CONDITIONS
 - NFIRST(J).GT.NFIRST(K) FOR J.GT.K
- OR NFIRST(J) = NFIRST(K) . NLAST(J) . LT. NLAST(K) FOR J. GT. K MSORT(K) = THE EXPUNENT OF S ASSIGNED TO ROW K OF THE MATRIX POLY
- N(J+K) + WHERE K=1.29....+LT(J) + IS THE TERMINAL NUDE OF . SFG RRANCH HAVING J AS ITS INITIAL NODE. THE VALUE OF EACH NONZERO ENTOY IN A GIVEN ROW IS MADE TO DECREASE AS K INCREASES. THE ADDITION ENTRY N(N+N+LT(NIN)+1)==1 IS ALSO MADE.
- NA(J)=NUMBER OF SYMBOLS(NOT COUNTING INVERSE SYMBOLS) IN THE CODE KSORT(J)
- NB(J) = NUMBER OF INVERSE SYMBOLS IN THE CODE KSORT(J)
- NCIR=1 IF CIRCUITS ARE TO BE FOUND, AND O IF CIRCUITS ARE NOT TO BE FOUND

- NEST(I)=1 IF THE SEG BRANCH I CONTAINS A SYMBOL IN ADDITION TO THE LAPLACE VARIABLE S. O IF THE SEG BRANCH I CONTAINS NO SYMBOL EXCEPT POSSIBLY FOR THE LAPLACE VARIABLE S
- NF (LF. JROJ) = ROUTING TABLE FOR THE NETWORK COMPOSED ONLY OF BRANCHES BELONGING TO THE TREE
- NFIR=1 IF PATHS ARE TO BE FOUND (NFIR SET TO 1 IF LISTP=1). AND 0 IF PATHS ARE NOT TO BE FOUND
- NFIRST(I)=INITIAL NODE OF THE DIRECTED SEG HRANCH I
- NIN=NETWORK BRANCH NUMBER OF THE SOURCE. THIS BECOMES THE SOURCE NODE
- NLAST(I) = TERMINAL NUDE OF THE DIRECTED SEG BRANCH I
- NOB=NUMBER OF BRANCHES IN NEIWORK
- NOD=NUMBER OF NODES IN NETWORK
- NODA=0 UNLESS OUTPUT IS A VOLTAGE TAKEN ACROSS MORE THAN ONE NETWORK --ELEMENT. IN THIS CASE IT DEIGNATES THE POSITIVE TERMINAL OF --THE OUTPUT VOLTAGE
- NOOR=O UNLESS OUTPUT IS A VOLTAGE TAKEN ACROSS MORE THAN ONE NETWORK ELEMENT. IN THIS CASE IT DESIGNATES THE NEGATIVE TERMINAL OF THE OUTPUT VOLTAGE
- NOL=NUMBER OF CIRCUITS(LOOPS)
- NOP=NUMBER OF PATHS FROM NODE NIN TO NODE NOUT IN THE SEG
- NOUT=NETWORK HRANCH NUMBER ASSOCIATED WITH THE OUTPUT (VOLTAGE ACROSS OF CURRENT THRE). THIS BECOMES THE SEG NODE CORRESPONDING TO I OUTPUT VADIABLE
- MOTREE(I)=1 IF THE I=TH NETWORK BRANCH IN THE DATA LIST IS CHOSEN FOR THE TREE; O OTHERWISE
- OF THE SEG. IF VINENOUT THIS IS THE NODE SEQUENCE FOR A CIRCUIT NPCODE (K) = COMPOSITE CODE USED TO IDENTIFY CIRCUIT I. FOUND BY SHMMING
- THE CODES, KOUES(J). ALLOTED TO EACH NODE, J. IN THE CIRCUIT
- NUME (NUMC) = NUMEA(I) WHERE NUMC = NUMC = NUMX(I)

 (USED ONLY FOR NETWORK TREE BRANCHES)
- NS(LF.JF)=1 IF THE NETWORK TREE BRANCH TH(LF.JF) HAS INITIAL NODE LF AND TERMINAL NODE JF AND EQUALS -1 IF THE NETWORK TREE BRANCH HAS INITIAL NODE JF AND TERMINAL NODE LF
- NUMEX(I). IF I-TH NETWORK BRANCH IN THE DATA BRANCH LIST IS A DEPENDENT SOURCE. THIS ARRAY EQUALS THE NETWORK BRANCH NUMBER ASSIGNED TO ITS CONTROL
- NUMX(I)=THE NETWORK BRANCH NUMBER ASSIGNED BY THE USED TO THE T-TH NETWORK BRANCH IN THE DATA BRANCH LIST
- NUP(J) DESIGNATES THE LOOP+ISET(J.NUP(J)). OF ROW J WHICH IS NOT TOUCHED BY THE LOOPS ENTERED IN ROW J+1 OF ISET.
- POLY(K+L) = MATRIX OF CONSTANTS WHERE EACH ENTRY IS ASSOCIATED WITH A TERM IN THE NUMERATOR OR DENOMINATOR OUTPUT POLYNOMIAL HAVING THE S POWER OF K AND THE SYMHOL CODE ASSIGNED TO COLUMN L
- POLYU(K.L) = MATRIX OF CONSTANTS WHERE EACH ENTRY IS ASSOCIATED WITH A TERM IN THE NUMERATOR OF THE OUTPUT POLYNOMIAL HAVING THE S POWE OF K AND THE SYMBOL CODE ASSIGNED TO COLUMN L
- SEMBOL (KO) SYMBAL COMRESPONDING TO THE CODE KHASIS## (KO-1)
- SEMPON(J1,J2),J2=1,2,...,NA(J1), AND SEMPOD(J1,J3),J3=1,2,...,NB(J1)
 ARE RESPECTIVELY THE MULTIPLICITY OF THE SYMBOLS
- SIMBON(J1.J2), J2=1.2....NA(J1), AND SIMBOD(J1.J3), J3=1.2...NA(J1)

 ARE RESPECTIVELY THE SYMBOLS AND INVERSE SYMBOLS CORRESPONDING
 TO THE SYMBOL CODE KSORT(J1)

SMBOL(K) = SYMBUL(1) FOR THE SFG BRANCH I WHERE I = MIX(K)
STAR(I) = ** I THIS ARRAY IS GENERATED FROM DATA STATEMENTS AND IS

US D IN FURMING THE ARRAYS SEMPON AND SEMPOD

SYM(NUMC) =SYMX(T) WHERE NUMC=NUMX(1)

(USED ONLY FOR NETWORK TREE BRANCHES)

SYMBUL(I)=SYMBOL ASSOCIATED WITH THE VALUE OF THE SEG BRANCH I SYMX(I)=SYMBOL(3 CHARACTERS AT MOST) ASSIGNED BY USER TO THE T+TH

NETWORK BRANCH IN THE DATA BRANCH LIST. THE ELEMENTS VALUE.
IF NOT SPECIFIED IS REPRESENTED BY THIS SYMBOL

TYPR (NUMC) STYPX (I) WHERE NUMCENUMX (I)

(USED ONLY FOR NETWORK TREE BRANCHES)

TYPE (NUMC) = TYPX (LINK) WHERE NUMC = NUMX (LINK)

(USED ONLY FOR NETWORK BRANCHES NOT IN THE TREE)

TYPX(I)=SPECIFIES THE ELEMENT TYPE OF THE I-TH NETWORK BRANCH

IN THE DATA BRANCH LIST, (MUST BE E, I, G, R, L, C, CC, CV, VC, OR VV AND MUST BE COMPATIBLE WITH THE UNITS OF THE ELEMENTS VALUE)

VAL(NUMC) = VALX(I) WHERE NUMC=NUMX(I)

(USED ONLY FOR NETWORK TREE BRANCHES)

VALX(I) #ELEMENT VALUE(E12.5) OF I-TH NETWORK BRANCH INTHE DATA BRANCH LIST

WEIGT(I) = CONSTANT TERM ASSOCIATED WITH THE VALUE OF THE SFG BRANCH T

IV-2. Flow Charts

Program SNAP is divided into the following sections:

Program MAIN (Subprograms 1 thru 12)

Subroutine SFG (Subprograms A thru J)

Subroutine FTREE

Subroutine TREP

Subroutine ARRAY

Subroutine DECODE

As indicated above, program MAIN is further broken down into 12 subprograms and subroutine SFG is divided into 10 subprograms.

This program reads in some preliminary network data.

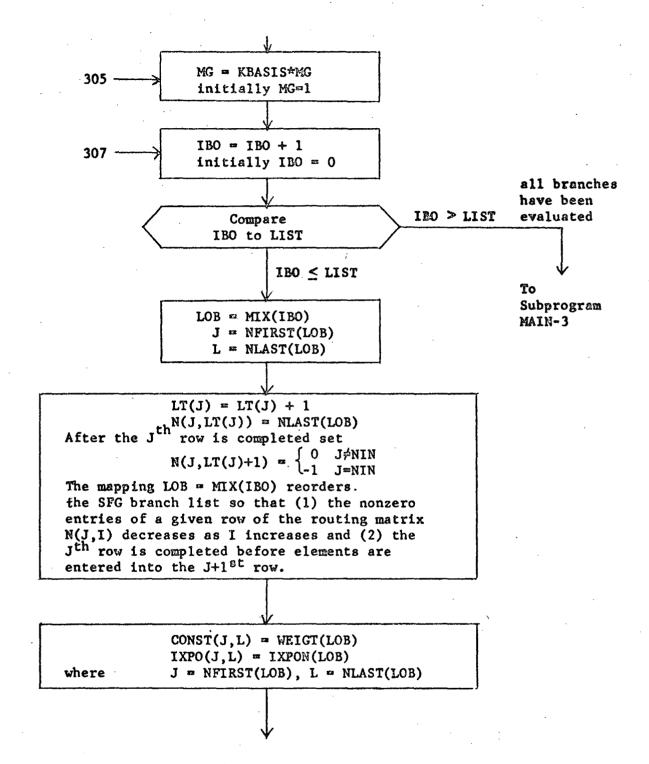
Read in

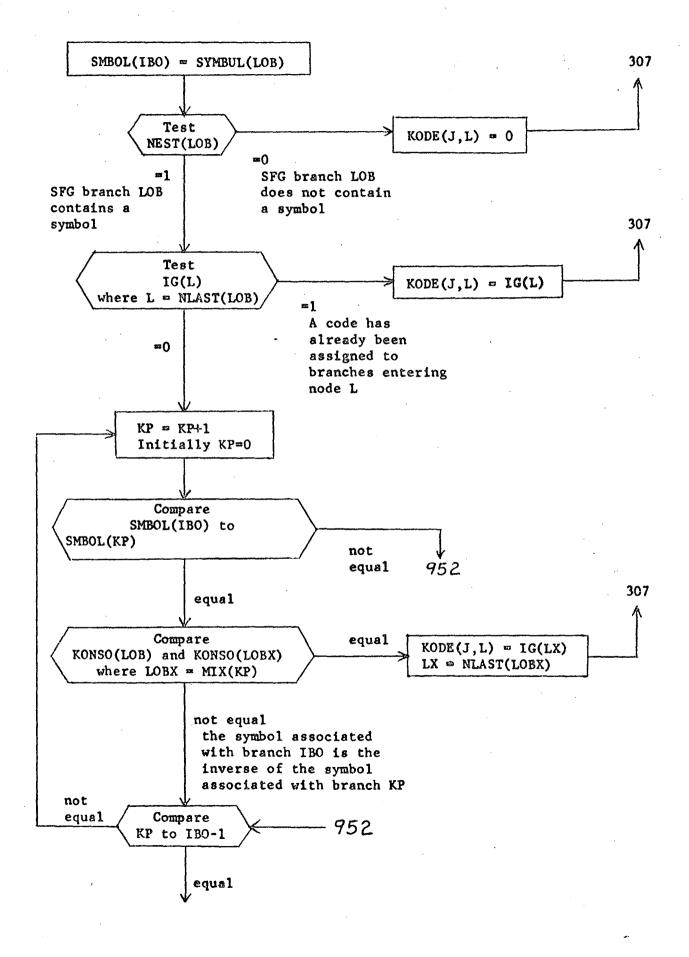
- (a) problem name(b) NOD, NOB, KBASIS, LISTG, LISTC, LISTP, NIN, NOUT, NODA, NODB Set KBASIS to 8 if a zero valve

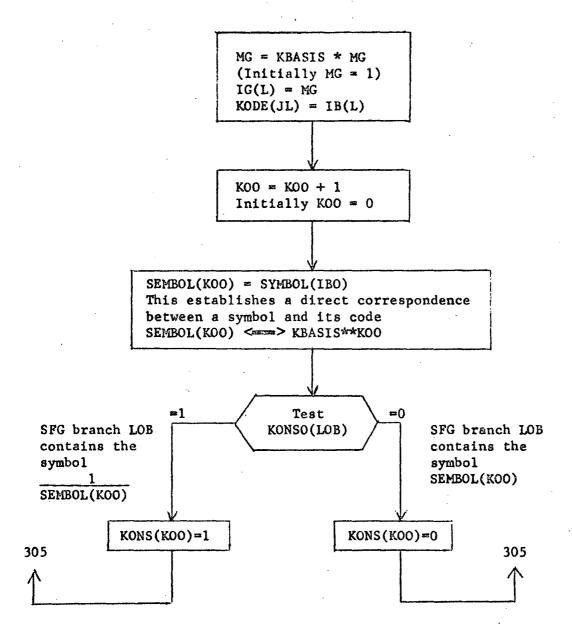
has been read in. Write out the above information for reference purposes.

To Subprogram MAIN-2

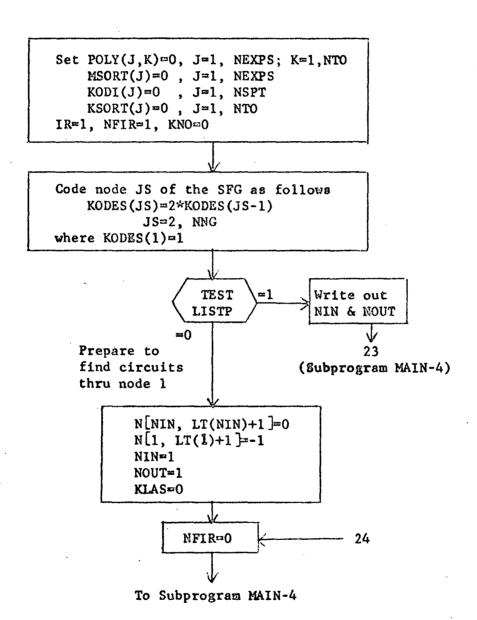
This program generates the SFG routing matrix, creates a code for each symbol (excluding 5), and sets up arrays for the constants and powers of 5 associated with the branch weights.

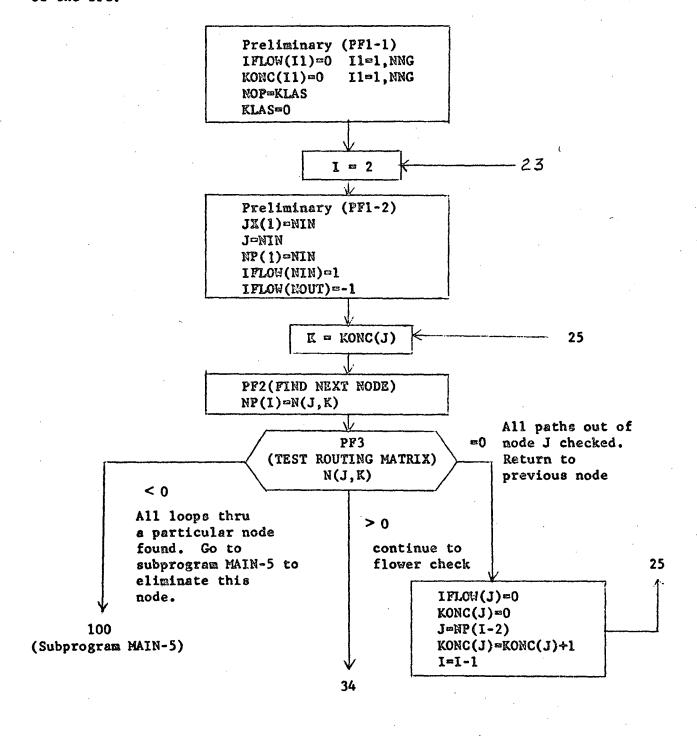

Call subroutine SFG.

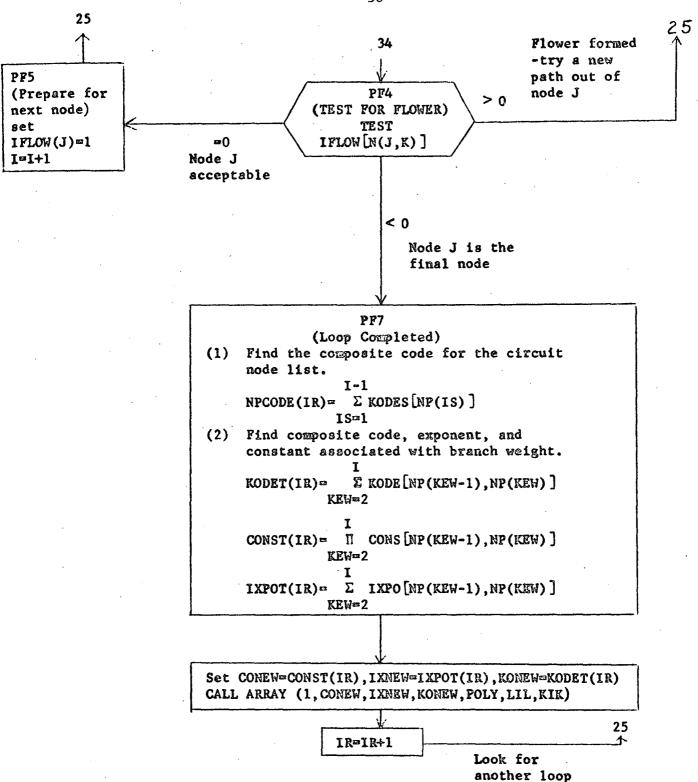

Transfer the following data into subroutine SFG: NIN, NOUT, NOD, NOB, LISTG, NODA, NODB.


(see subroutine SFG for additional data read in)

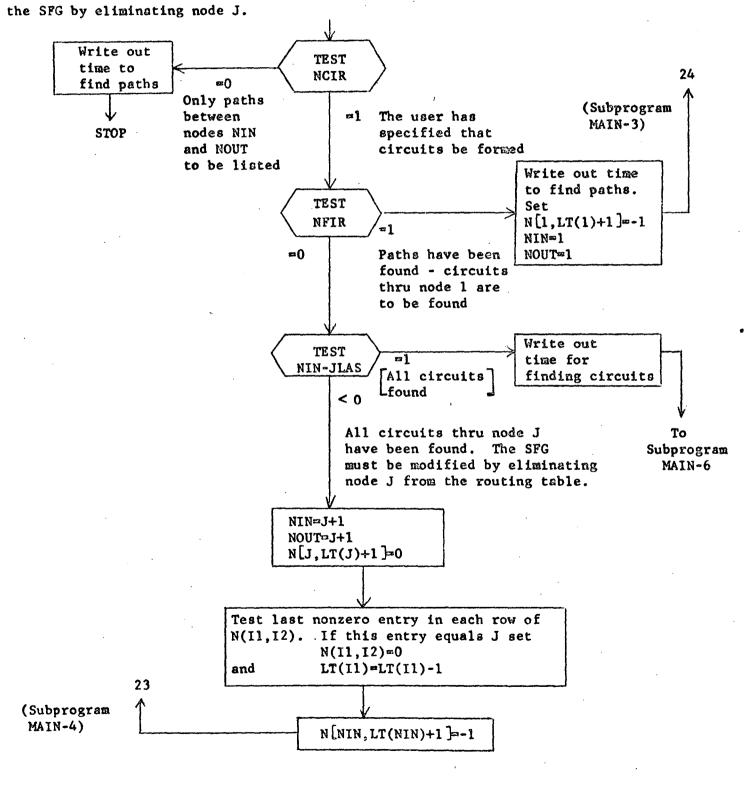
Subroutine SFG returns the following information to program MAIN-2:


LIST, NFIRST(I), NLAST(I), IXFON(I), WEIGT(I), SYMBUL(I), KONSO(I), NEST(I), MIX(I), I = 1, LIST

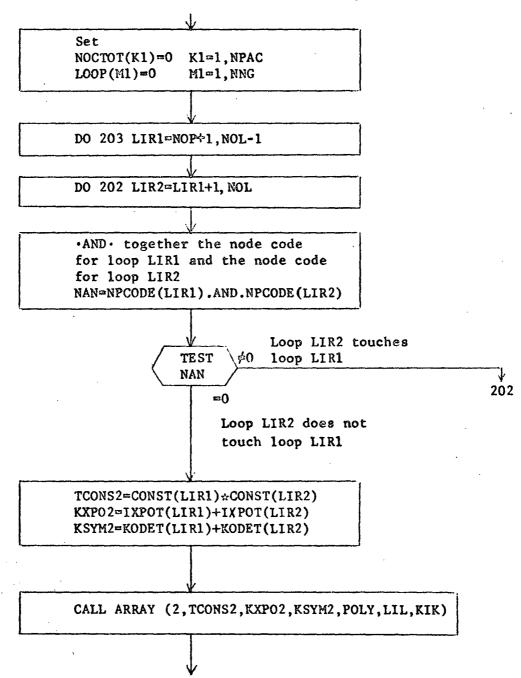


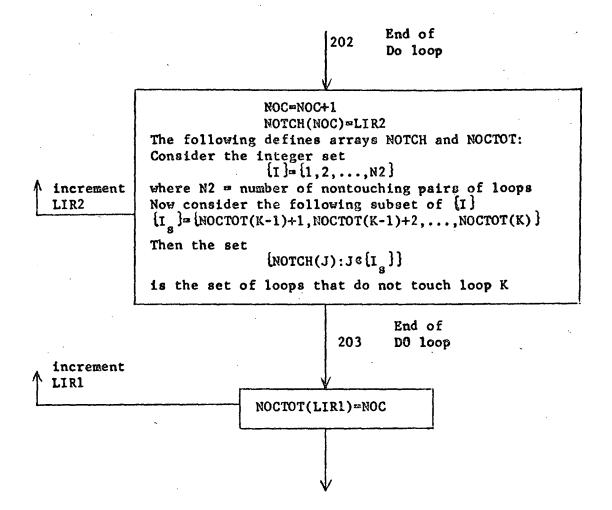


This program codes the nodes of the SFG, and prepares the counters for finding all paths and/or circuits.



This program finds all paths from node NIN to node NOUT and/or all circuits of the SFG.



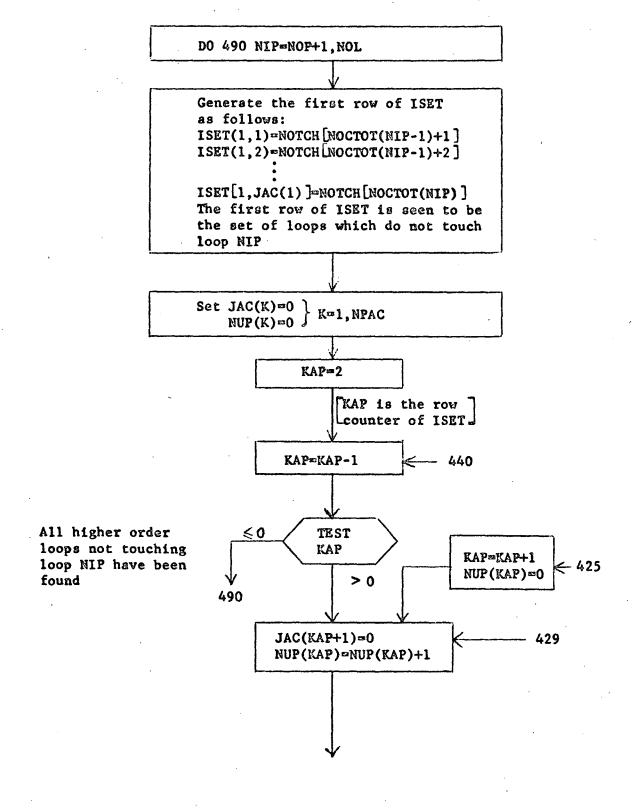


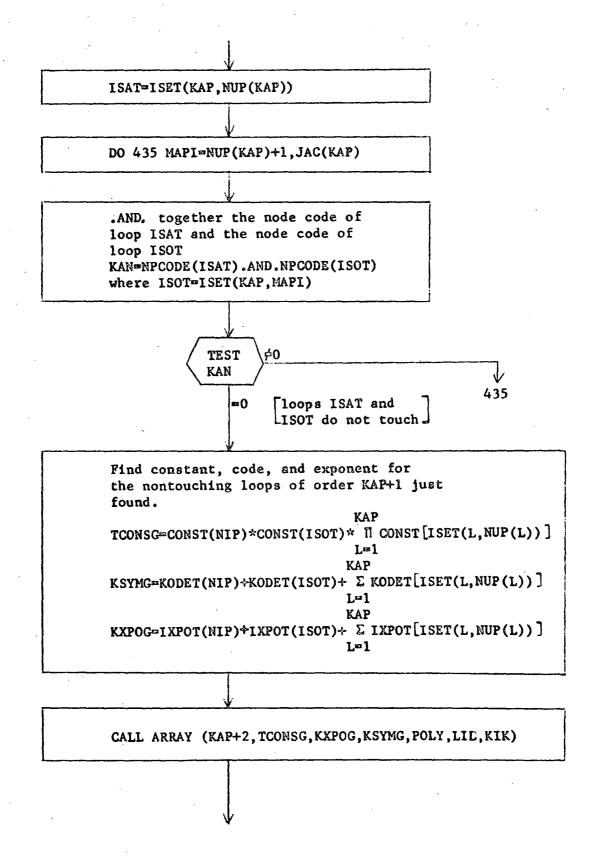
This program determines if circuits are to be found and if so modifies

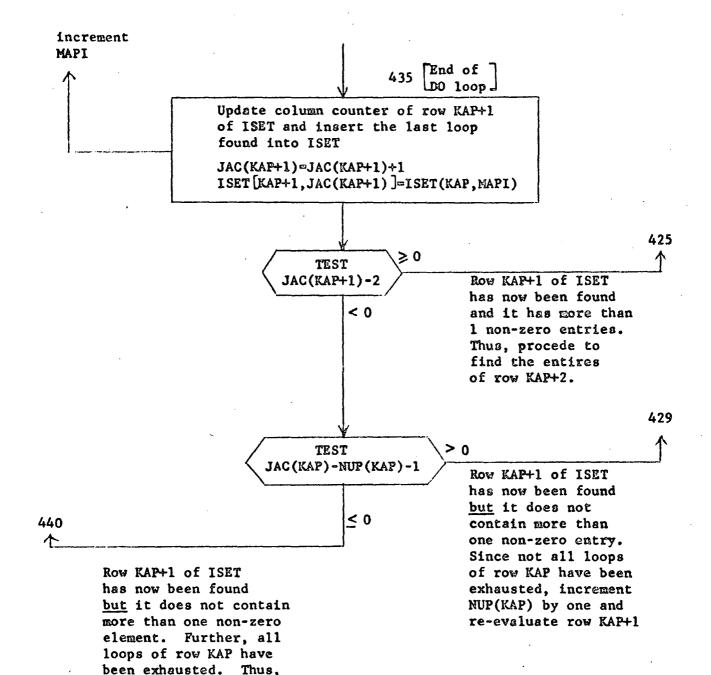
This program finds and stores all 2nd order nontouching loops

This program finds all nontouching loops of order greater than 2, and stores the associated code, power of s, and constant term.

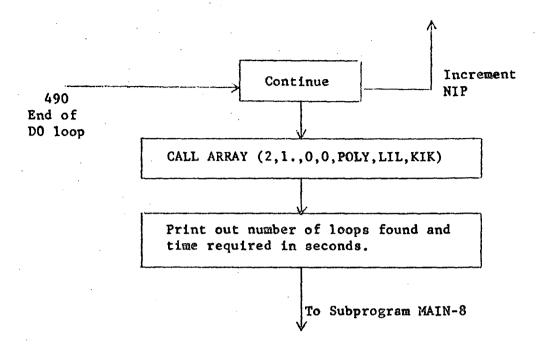
The matrix ISET is given below in its general form to aid in understanding the flow chart of subprogram MAIN-7.

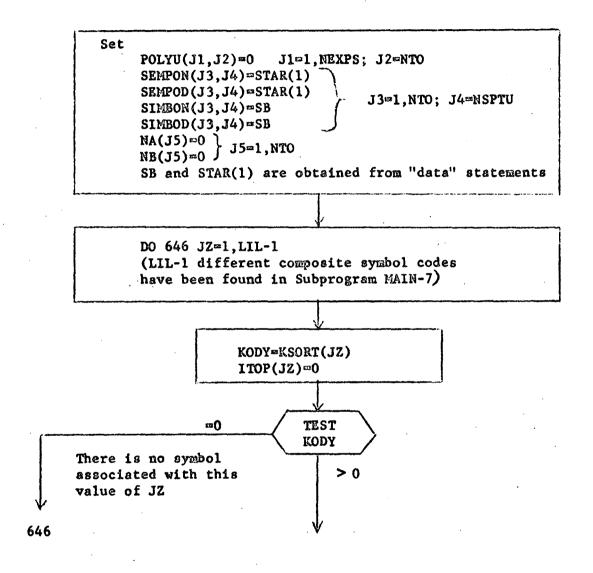

where ISET(J,I), I=1,2,...,JAC(J)

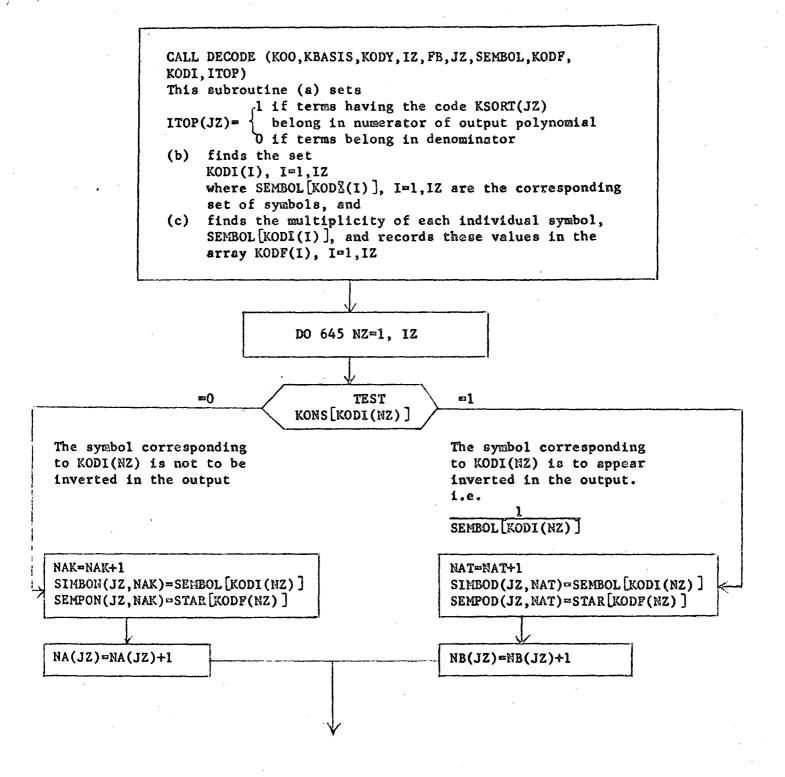

is the subset of

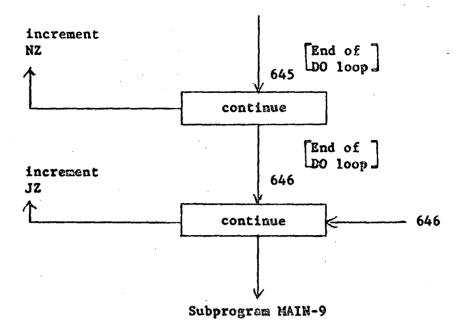

{ISET[J-1,NUP(J-1)+1],ISET[J-1,NUP(J-1)+2],...,ISET[J-1,JAC(J-1)]}

which does not touch the loop

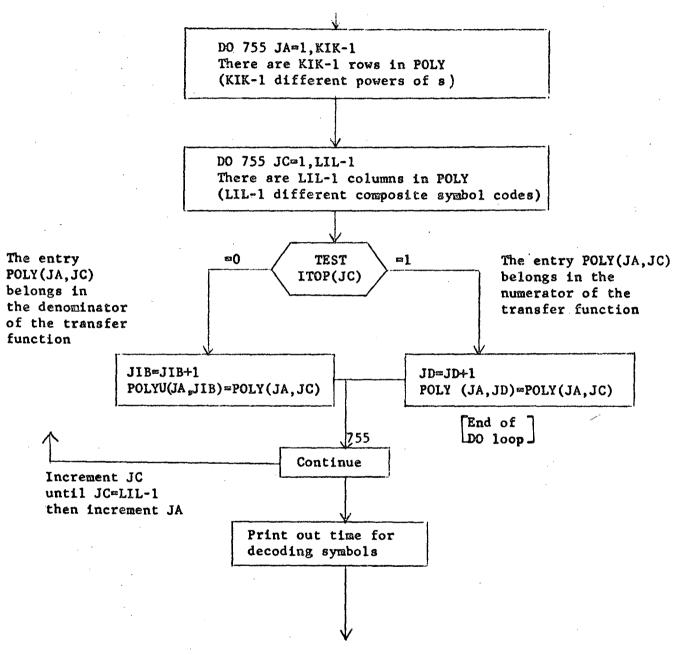

ISET[J-1,NUP(J-1)]



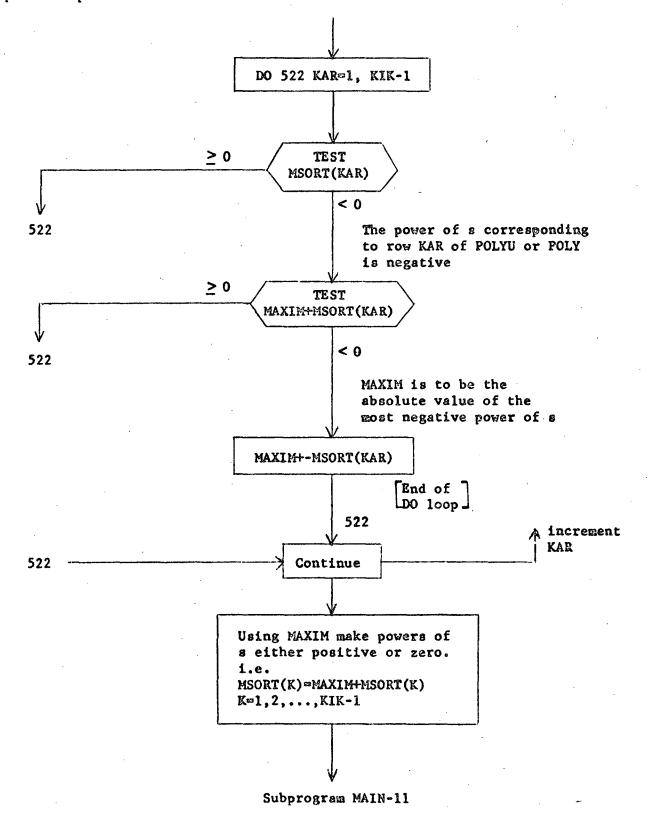



it is necessary to back up one row and re-evaluated row KAP

This program decodes composite codes representing nontouching loops and sets up tags for use in printing out the symbolic transfer function.



Subprogram MAIN-9


This program separates POLY into the arrays POLYU and POLY for use in printing out the constant terms of the transfer function.

Subprogram MAIN-10

Subprogram MAIN-10

This program normalizes the transfer function so as to have all positive powers of s

Subprogram MAIN-11

Write out the matrix of constant coefficients for the numerator polynomial of the transfer function. Also write out the symbols and s powers that correspond respectively to the columns and rows of the array of constants.

Subprogram MAIN-12

Write out the matrix of constant coefficients for the denominator polynomial of the transfer function. Also write out the symbols and s powers that correspond respectively to the columns and rows of the array of constants.

Subroutine SFG(NFIRST, NLAST, IXPON, WEIGHT, SYMBUL, KONSO, MIX, NEST, LIST, NIN, NOUT, NOD, NOB, LISTG, NODA, NODB)

This subroutine generates a signal flow-graph (SFG) for the given network.

The program is subdivided into subprograms A thru J.

Subprogram "A"

This program uses DATA statements to define certain variables, nulls arrays, creates the SFG feedback branch, reads in network branch information and calls FTREE to find a tree.

Use DATA statement to define the following variables: Y,G,C,IQ,R,CL,Z,E,CI,CC,CV,VV,VC,FB,ONE.

Set NS(IC,IK)=0 NF(IC,IK)=0 IC=1,NNG; IK=1,NNG
NEST(IG)=0 IG=1,NBG
KONSO(IG)=0 II=1,NNG
JROW(I1)=0 I1=1,NNG
MO=0,LO=0,LIST=1,LINK=0

Create SFG feedback branch used to make the SFG "closed".

NLAST(1)=NIN

IXPON(1)=0

WEIGT(1)=-1

SYMBUL(1)=FB

KONSO(1)=0

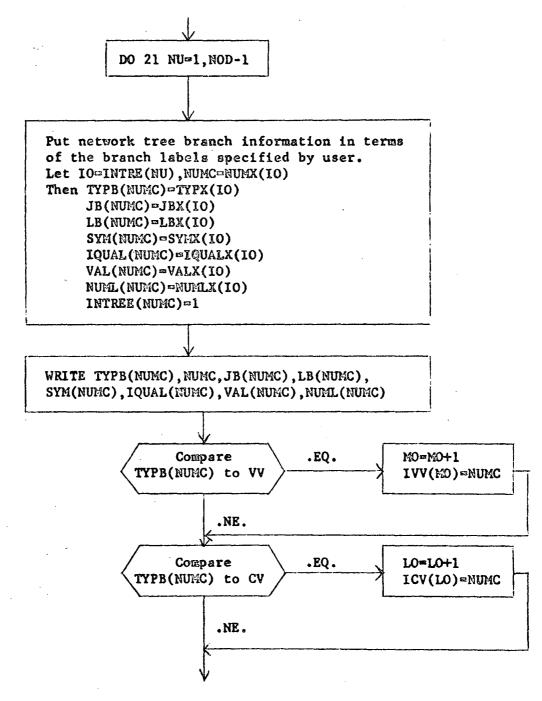
NEST(1)=1

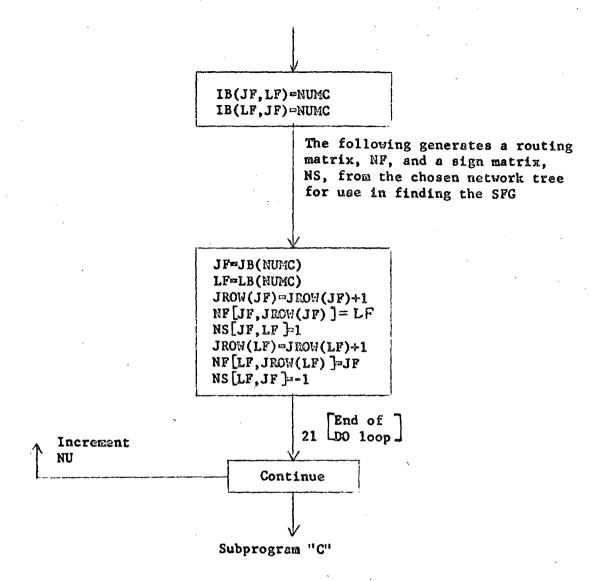
Note: NFIRST(1) is determined in Subprogram "I"

Read in the following network branch information:

TYPX(I),NUMX(I),JBX(I),LBX(I),SYMX(I),

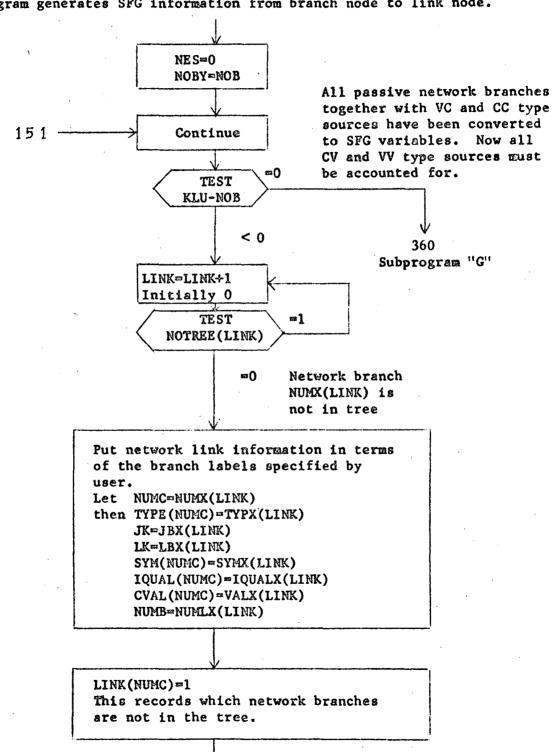
IQUALX(I),VALX(I),NUMLX(I)

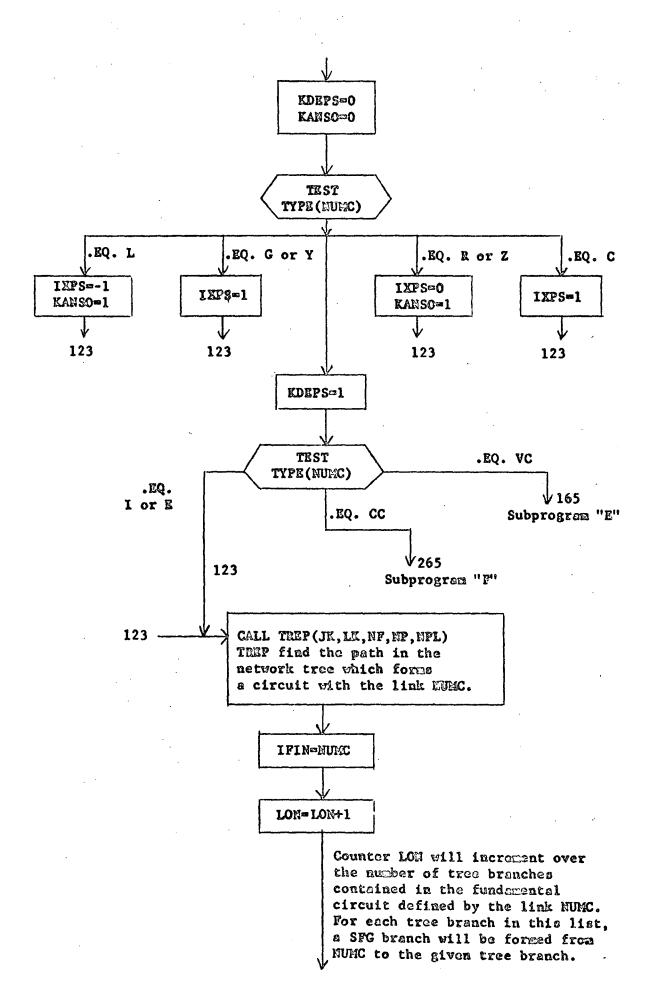

I=1,NOB

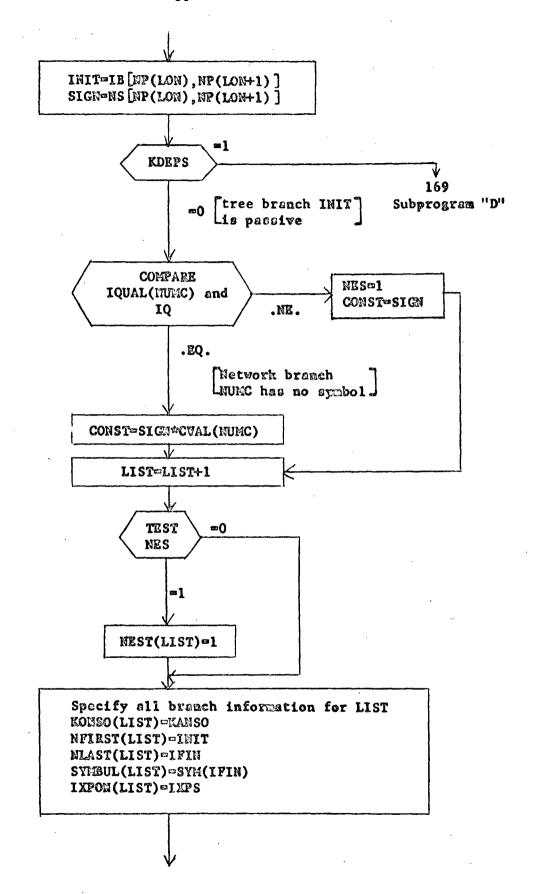

Choose a tree of the network for use in finding the SFG CALL FTREE(TYPX, JBX, LBX, INTRE, NOTREE, NOD, NOB)

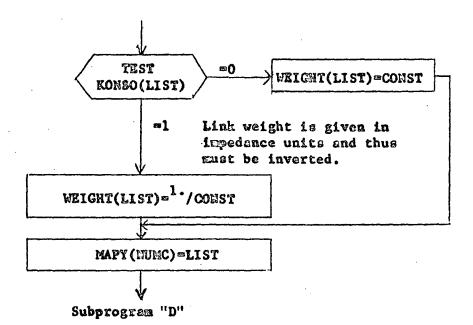
Subprogram "B"

Subprogram "B"

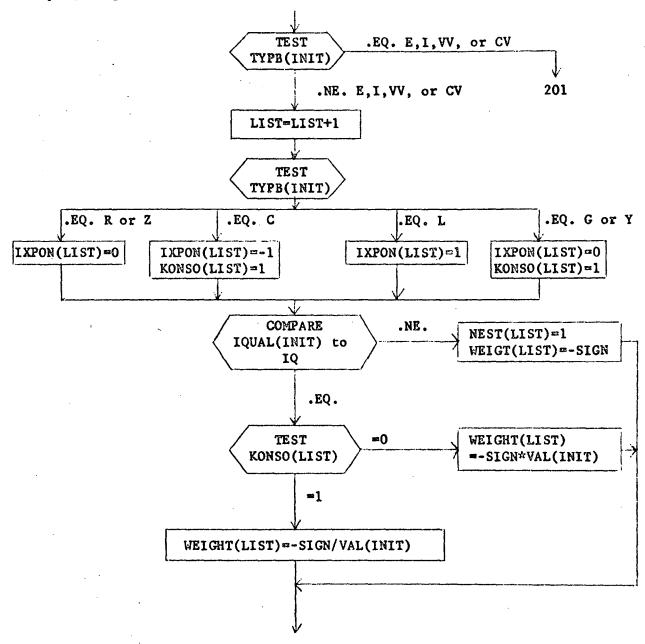

This program sets up tree branch information and creates a routing matrix and sign matrix for the tree.

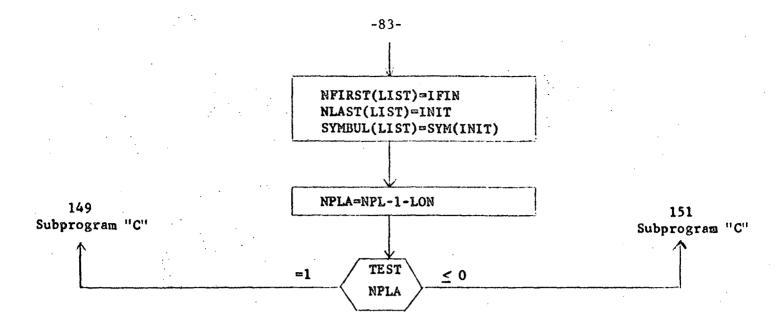




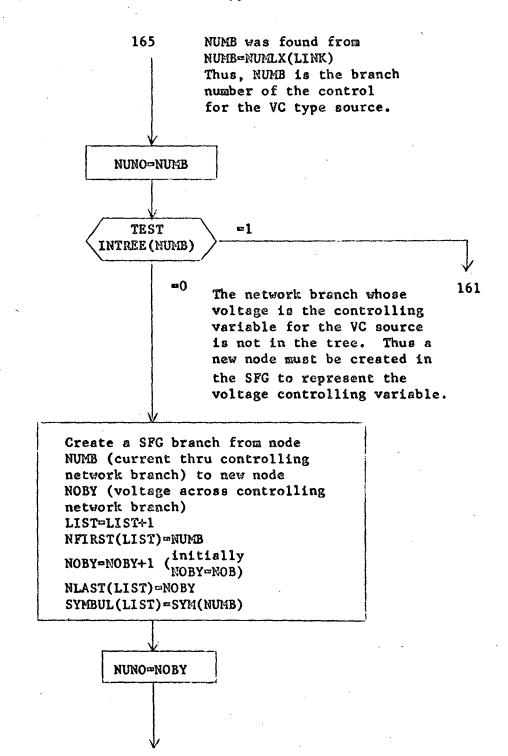

Subprogram "C"

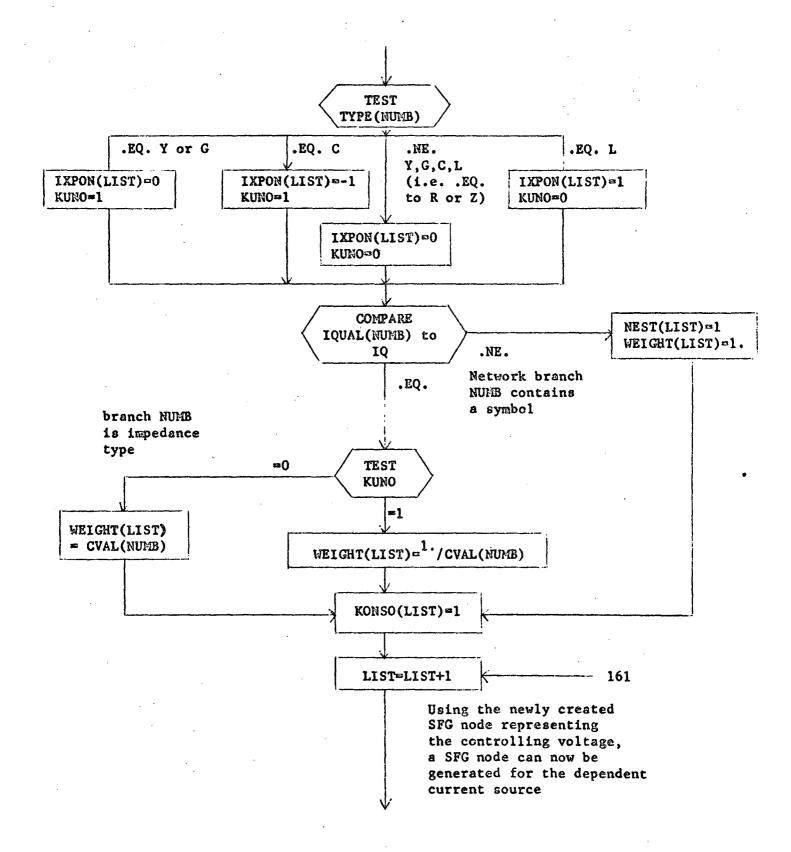
This program generates SFG information from branch node to link node.

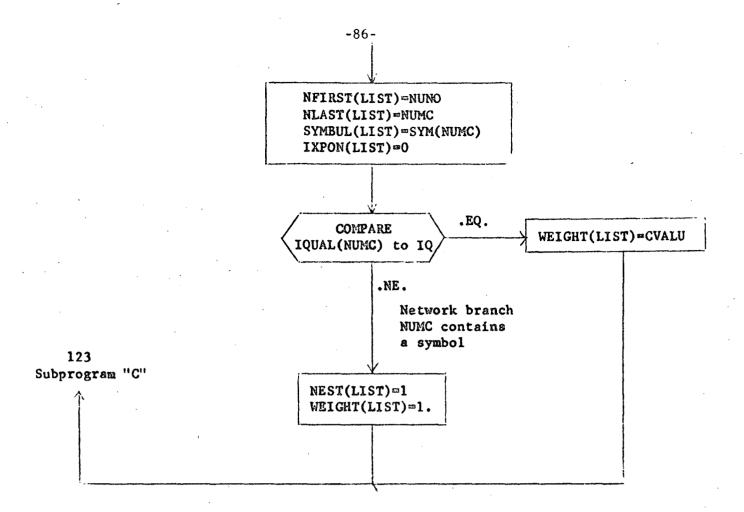




Subprogram "D"

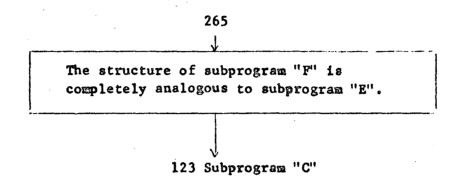

This program generates SFG information from link node to branch node.

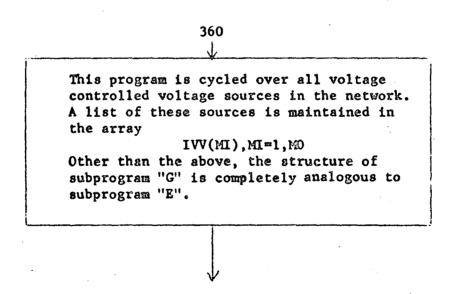




Subprogram "E"

This program sets up SFG information for VC type control sources.




Subprogram "F"

This program sets up SFG information for CC type control sources.

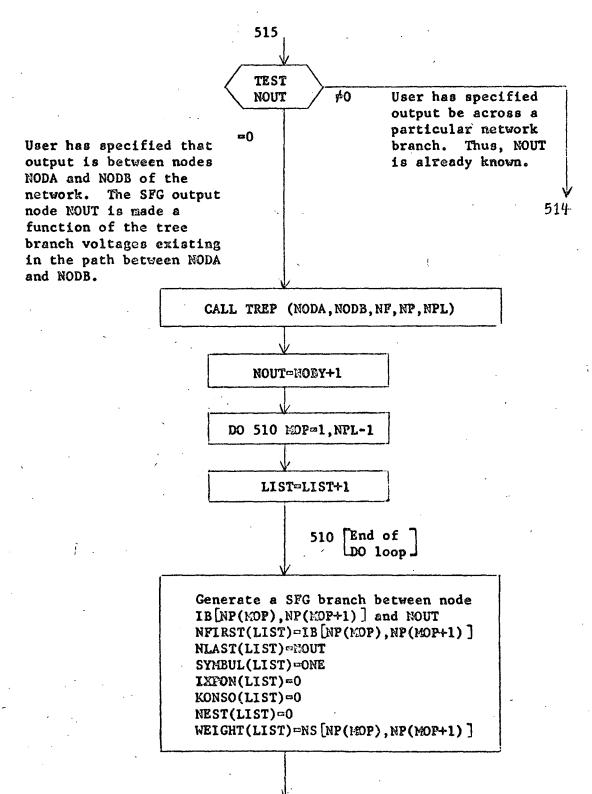
Subprogram "G"

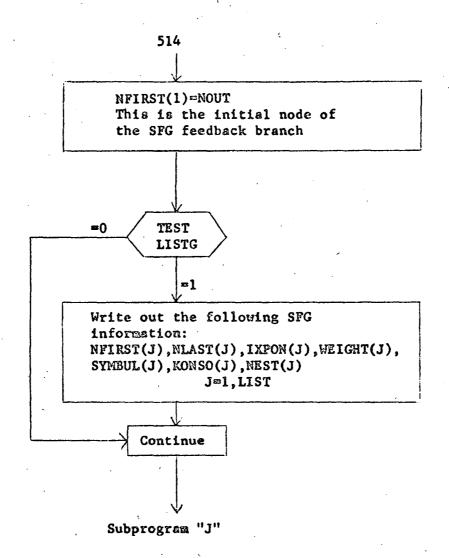
This program sets up SFG information for VV type control sources.

460 Subprogram "H"

Subprogram "H"

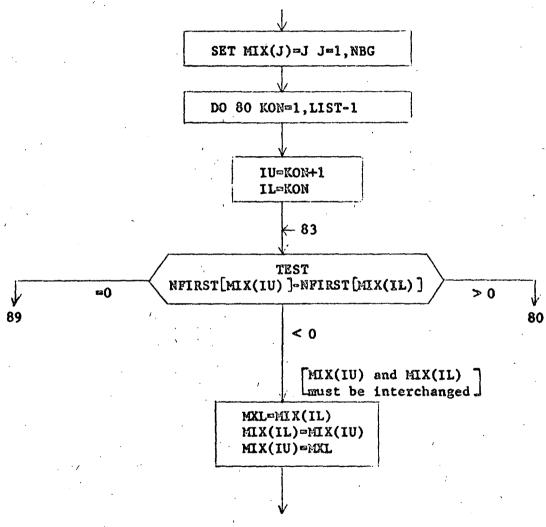
This program sets up SFG information for CV type control sources.

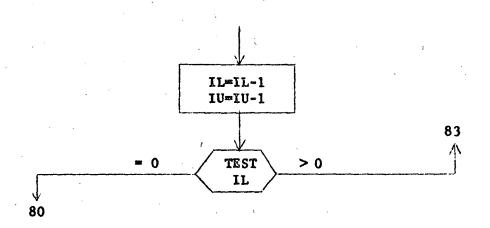

This program is cycled over all current controlled voltage sources in the network. A list of these sources is maintained in the array ICV(MI), MI=1, LO
Other than the above, the structure of subprogram "H" is completely analogous to subprogram "E"


515 Subprogram "I"

The SFG is now complete except for the output node.

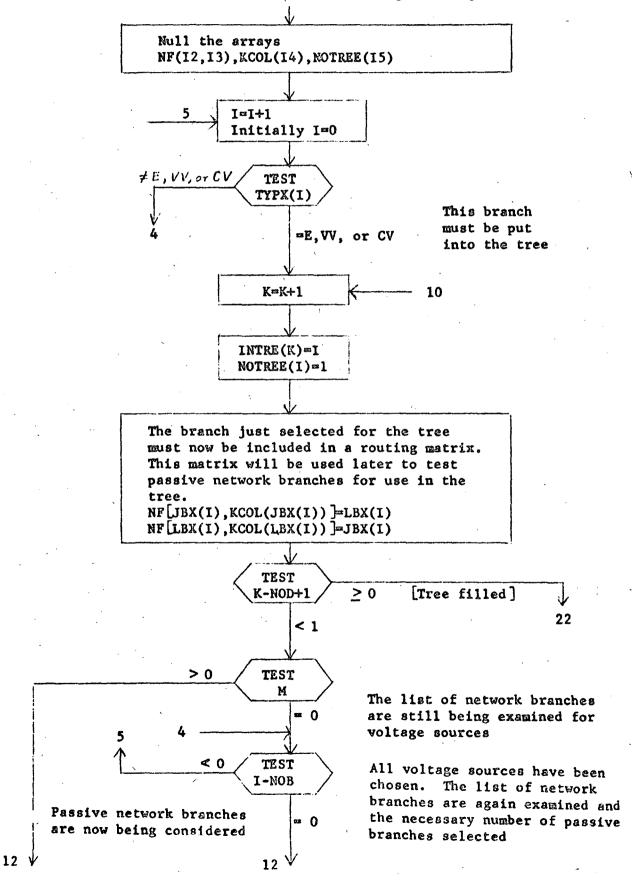
Subprogram "I"

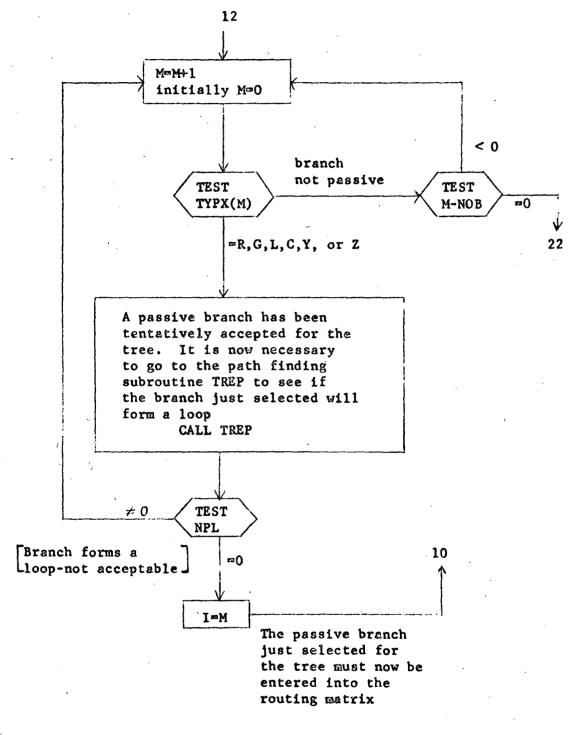

This program generates the output node of the SFG.

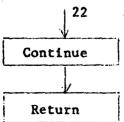


Subprogram "J"

This program orders SFG information for input to main program. That is, a mapping function MIX is found which reorders the SFG information so that the routing matrix N(J,K) as calculated in MAIN will automatically have its entries decrease as K increases.

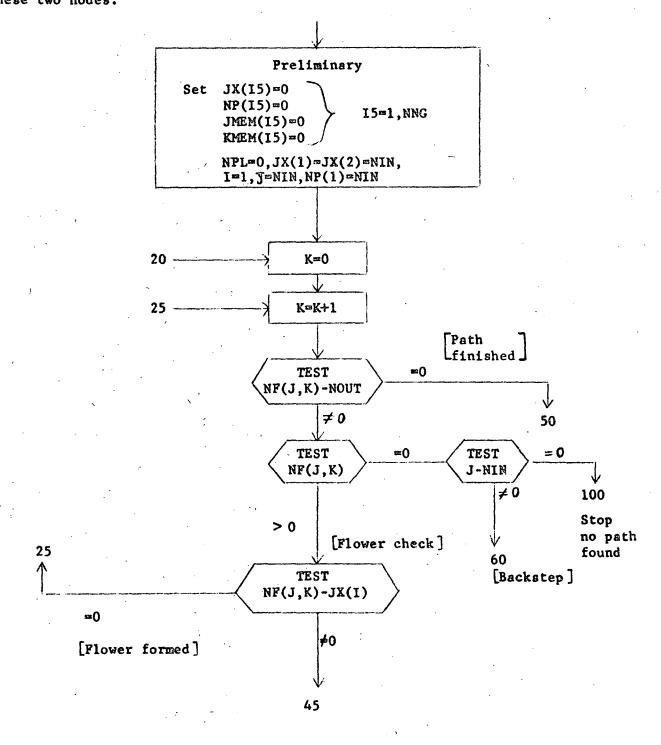


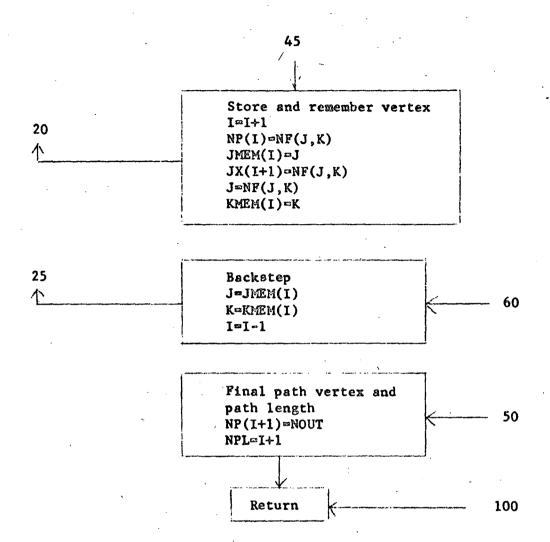




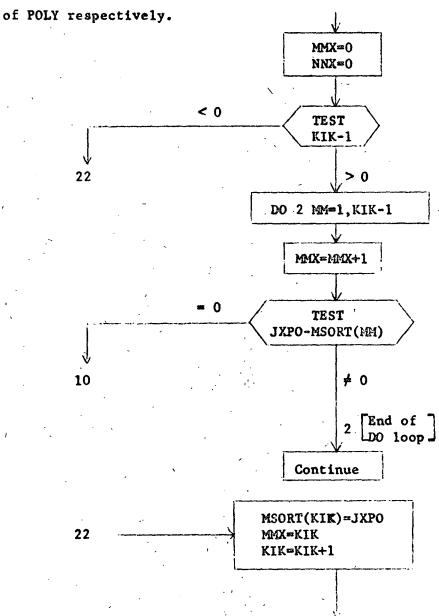
Subroutine FTREE(TYPX, JBX, LBX, INTRE, NOTREE, NOD, NOB)

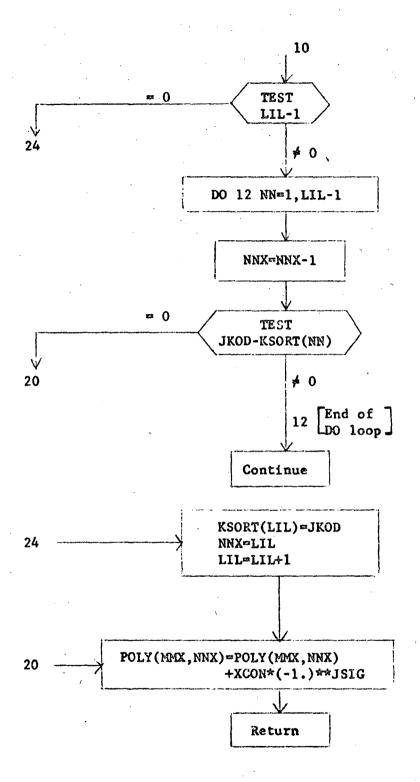
This program finds a tree of the network to use in generating a SFG.



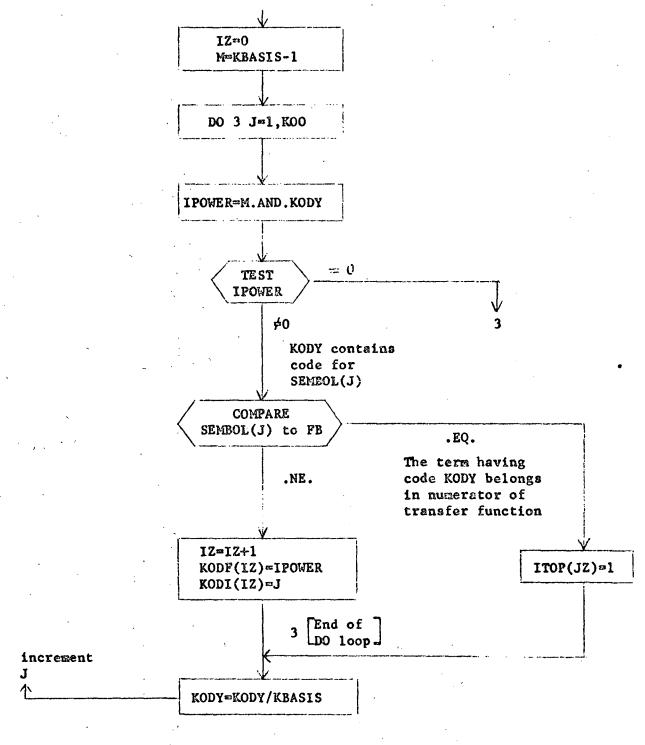


Subroutine TREP(NIN, NOUT, NF, NP, NPL)


Given the routing matrix for the network tree with input and output nodes specified, this subroutine finds a node list representing the path between these two nodes.



Subroutine ARRAY(JSIG, XCON, JXPO, JKOD, POLY, LIL, KIK)


This subroutine takes the constant associated with each loop or nontouching combination of loops in the SFG and stores it in the matrix POLY. It does this by comparing the code and exponent of the given loop combination with the codes and exponents assigned to the columns and rows of POLY respectively.

Subroutine DECODE(KOO, KODY, IZ, FB, JZ, SEMBOL, KODF, KODI, ITOP, KBASIS)

This program decodes the composite symbol codes.

IV-3. Program Listing

```
C
                         ****SNAP***
C
¢
                 THIS PROGRAM FINDS THE SYMBOLIC TRANSFER
C
                 FUNCTION OR IMMITANCE FUNCTION OF A
¢
                 LUMPED LINEAR TIME INVARIANT NETWOPK
C
THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
  CHARACTERISTIC NHN (VEFINED IN PROGRAM MAIN-1)
     DIMENSION L+ (35) + IG(35) + SMBOL (35)
     DIMENSION ICLOW (35), NP (35), KODES (35), KONC (35)
     DIMENSION N(35,35), CONS(35,35), KODE (35,35), IXPO(35,35)
THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
  CHARACTERISTIC NEG
     DIMENSION NFIRST (100) , NLAST (100) , [XPON (100) , WEIGT (100)
     DIMENSION SYMBUL(100) + MIX(100) + CVAL(100)
     DIMENSION KONSO(100) , NEST(100) , TYPE(100)
THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
  CHARACTERISTIC NPAC
     DIMENSION CONST (300) , KUDET (300) , TXPOT (300) , MAPO (300)
     DIMENSION NOCTOT (300), NUP (300), JAC (300)
     DIMENSION NOCODE (300)
THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
  CHARACTERISTICS NTO. NSPT. AND NEXPS
     DIMENSION NA (150) , NB (150)
     DIMENSION KONS (20) . KODI (20) . SEMBOL (20) . KUUF (20)
     DIMENSION MSORT (15), KSORT (150) (POLYU (15, 150)
     DIMENSION POLY (15, 150) , 1 TOP , 150)
     DIMENSION SIMBON (150,10), SIMBOD (150,10)
     DIMENSION SEMPON (150,10), SEMPOD (150,10)
```

900

10

150

13

150 160

14

17

190

205

23D

24

25

240

27r

20

29ე 300

31

ا جُ ا

330

34-

34

370

3:

21

```
390
                                                                              400
                                                                              410
   THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NEIWORK
C
                                                                              420
   CHARACTERISTICS NRI, NCI, NEON, AND NRS
C
      DIMENSION ICET (15,100), NOTCH (1200), STAR (9)
                                                                              430
440
                                                                              450
      COMMON SEMPON, SEMPOD, PULY
                                                                              460
      COMMON/CI/MSORT, KSORT
                                                                              470
      COMMON/CS/NNG , NBG
                                                                              480
      COMMON/C3/NEXPS,NTO
                                                                              490
      COMMON/C4/NSPT
                                                                              500
      EQUIVALENCE (IXPO(1.1) NOTCH(1) SIMBON(1.1))
                                                                              510
      EQUIVALENCE (CONS(1 \cdot 1) \cdot ISET(1 \cdot 1) \cdot SIMBOD(1 \cdot 1))
                                                                              520
      EQUIVALENCE (KODE(1.1) , PULYU(1.1))
      DATA DASH/2H //
                                                                              530
                                                                              540
      DATA FB , SH/7H FH , 3H 1 /
                                                                              550
      DATA STAR(1) +STAR(2) +STAR(3)/3H
                                        ,3H##2,3H##3/
      DATA STAR(4) + STAR(5) + STAR(6) / 3H##4+3H##5+3H##6/
                                                                              560
                                                                              570
      DATA STAR(7) + STAR(8) + STAR(9) / 3H**7 + 3H**8 + 3H**9/
                                                                              580
      DATA ONE/3H 1/
                                                                              590
                                                                              600
Ç
                    PROGRAM MAIN--1
                                                                              610
                    PRELIMINARY INPUT INFORMATION
                                                                              620
C
                                                                              630
                                                                              640
C
    NAMENUMBER OF BRANCHES IN NETWORK
                                                                              650
   NAGENUMBER OF BRANCHES OF SEG
C
                                                                              66n
C
    NTO INUMBER OF TERMS IN OUTPUT
                                                                              670
C
    NSPT=NUMBER OF SYMBOLS PER TERM
                                                                              680
C
    NEXPS=NUMBER OF DIFFERENT POWERS OF S
                                                                              690
C
    NPACENUMBER UE PATHS PLUS CIRCUITS
                                                                              70n
C
    NRI=MAXIMUM NUMBER OF NUNTOUCHING LOOPS
                                                                              710
C
   NCI=MAXIMUM NUMBER OF LOOPS NOT TOUCHING ANY GIVEN LOOP-
                                                                              720
C
    NEON=NUMBER OF NONTOUCHING PAIRS OF LOOPS
                                                                              730
C
    NRS=NUMBER OF REPLATED SYMBOLS (NUMBER OF NETWORK
                                                                              740
C
        ELEMENTS ASSIGNED SAME SYMBOL)
                                                                              75n
      NBN=35
                                                                              760
      NHG=100
                                                                              770
      NT0=150
                                                                              780
      NSPT=20
                                                                              790
      NEXPS=15
                                                                              800
      NPAC=300
                                                                              81n
      NRT=15
                                                                              820
      NCI=100
                                                                              830
      NEON=1200
                                                                              840
      NRS=9
                                                                              85n
    NSPTU=NUMBER OF SYMBOLS IN NUMERATOR OF EACH TERM
C
                                                                              860
    NRTG=NUMBER OF BRANCHES IN TREE OF SFG
C
                                                                              870
C
    NNG=NUMBER OF NODES IN SFG
                                                                              880
      NNG=NHN
                                                                              890
      NSPTU=NSPT/2
                                                                              900
                                                                              910
      NBTG=NBN
      CALL SECOND (TCOMP)
                                                                              920
      WRITE (6, 160%) TOOMP
                                                                              930
 1600 FORMAT (1X.48H CUMPILATION TIME IN SECONUS, F15.8/)
                                                                              941
 1111 CONTINUE
                                                                              950
      WRITE (6,519)
                                                                              960
  519 FORMAT(1H1)
                                                                              970
      CALL SECOND (TSTART)
                                                                              980
C THE NEXT 6 CARDS ARE FOR PROBLEM IDENTIFICATION ON THE 1ST DATA CARD
                                                                              990
```

```
1000
      READ (5.1150) (WEIGT (J), J=1.72)
      FORMAT (72A1)
                                                                                    10101
1150
                                                                                    1020
      1F(EOF •5) 11 111 11112
                                                                                    1030
11111 STOP
                                                                                    1040
11112 CONTINUE
                                                                                    1050
      WRITE (6.1160) (WEIGT(J), J=1.71)
                                                                                    1060
      FORMAT(1x,71A1//)
                                                                                    1070
      00 1151 J=1:72
                                                                                    108%
1151
      WEIGT (J) = 0.
                                                                                    1090
      READ (5.1240) NOU. NOB, KHASIS, LISTG. LISTC. LISTP
 1240 FORMAT (315,5X,311)
                                                                                    1100-
                                                                                    1110
      IF (KBASIS) 1357,1357,1358
                                                                                    1154
 1357 KBASIS=8
                                                                                    1130
 1358 CONTINUE
                                                                                    1140
      READ (5.1) NTN. NOUT, NODA, NODB
                                                                                    1150
    ] FORMAT (415)
                                                                                    1160
      WRITE (6,720) NOU
                                                                                    1170
  720 FORMAT (2X, 16HNUMBER OF NODE = . 13)
                                                                                    1186
      WRITE (6,721, NOH
  721 FORMAT (2X, 19HNUMBER OF BRANCHES=.13)
                                                                                    119 (أمنا)
      IF (LISIG) 72a, 723, 722
                                                                                    1200
                                                                                    1514
  722 CONTINUE
                                                                                    1221
C LIST SFG
  723 IF (LISTC) 725,725,724
                                                                                    1530
                                                                                    1249
  724 CONTINUE
                                                                                    125d
C LIST ALL CIRCUITS
  725 IF (LISTP) 729, 126, 727
                                                                                    1256
  727 WRITE (6,728)
                                                                                    1270
  728 FORMAT(2X,24HLIST ALL PATHS FROM NODE,13,2X,7HTO NODE,13)
                                                                                    1286
  726 WRITE (6,729) NIN
                                                                                    129ć
  729 FORMAT (2x, 25HELEMENT NUMBER OF SOURCE=+13)
                                                                                    13ຄຄັ
      IF (NOUT) 1802, 1802, 1804
                                                                                    1310
 1804 CONTINUE
                                                                                    1324
      WRITE (6,730) NOUT
                                                                                    133/4
  730 FORMAT (2X+3BHELLMENT NUMBER ASSOCIATED WITH OUTPUT=,[3]
                                                                                    1340
      GO TO 1806
                                                                                    1356
                                                                                    136
 1802 CONTINUE
      WRITE (6,731) NOUA
                                                                                    1370
  73) FORMAT (2X, 33HPOSITIVE OUTPUT VOLTAGE TERMINAL=, 13)
                                                                                    1380
      WRITE (6,732) NODB
                                                                                    139:
  732 FORMAT(2X, 33HNEGATIVE OUTPUT VULTAGE TERMINAL=, 13)
                                                                                    140
 1806 CONTINUE
                                                                                    1410
      WRITE (6,850) KHASIS
                                                                                    1425
  850 FORMAT (2x, 22HHASE FOR SYMBOL CODES=, 14)
                                                                                    1440
                                                                                    1450
                                                                                    146
C
                     PROGRAM MAIN--2
                                                                                   1476
C
                      TAKE SFO BRANAH INFORMATION AS FOUND
                                                                                    1480
C
                      BY SUBROUTINE SEG AND GENERATE
C
                      (1) ROUTING MATRIX INFORMATION
                                                                                    150
C
                          N(JOK) - AND LT(J)
                                                                                    151កី
C
                      (2) SEG BRANCH VALUES IXPO(J.L), CONS(J.L),
                                                                                    1520
C
                          KODE (J.L) WHERE JENFIRST (T). LENLAST (I). AND
                                                                                    153
C
                          I=BRANCH NUMBER
                                                                                    1544
C
                          TOGETHER WITH THE SYMBUL SEMBOL (K), K=1.20....MI
                                                                                    1550
                                                                                    1565
C
                                                                                    157
   CALL SUBROUTING TO FORMULATE THE SIGNAL FLOW GRAPH, SEG
                                                                                    1587
      CALL SFG (NFIRST+NLAST+IXPON+WEIGT+SYMBUL+KONSO+MIX+NEST+LIST+
                                                                                    1590
     ININ, NOUT, NOU, NOU, LISTG, NOUA, NOUB)
                                                                                    160
```

	IF (NOB) 1111,11111,1920		•	••	1610
1920	CONTINUE	•		•	1620
	CALL SECOND (T2) WRITE (6,93%)				1630 1640
	TSFG=T2=TSTART				1650
	WRITE (6,1602) TSFG				1660
1602	FORMAT (1x, 2/HTIME FOR		SIGNAL/		1670
	122H FLOW GRAPH IN SEC	ONDS, F15, 3/)		·	1680 1690
	IBO≡0 Ko≡n				1700
	MICH=1				1710
	K=0		2		1720
	MG=1			,	1730 1740
	JLAS=1 NCIR=1				1750
	ININ=NIN	* * * * * * * * * * * * * * * * * * * *			1760
	INOUT=NOUT		•		1770
	K00=0			,	1780
301	00 301 INK=1 + NSPT = KONS(INK)=0				1790 1800
301	00 300 INK=1+NNG	-			1810
300	IG(INK)=0			e e e e e e e e e	1850
		1,	•		1830
C FI	ND IXPO(J.L), CONS(J.L) GO TO 307			•	1840 1850
305	MG=KBASIS#MG			•	1860
	MICH=MICH+1	•			1870
307	180=180+1	•			1880
	1F(LIST-IHU)14,4,4 CONTINUE				1890 1900
4	LOB=MIX([BO)			· · · · · · · · · · · · · · · · · · ·	1910
	J=NFIRST(LOB)				1920
	L=NLAST (LOB)	• •	J		1930
r	IXPO(J.L)=IXPON(LOB) CONS(J.L)=WEIGT(LOB)	1	•		194n 1950
					1960
	NU ROUTING MATRIX		•	grand grand	1970
8	IF(J.EQ.JLAc) GO TO 1	0 ;			1980
	LT(JLAS)=K K1=K+1	,		•	199 <u>0</u> 2000
	IF (JLAS=NIN) 28, 27, 28	1		•	2010
27	N(JLAS+K1) =-1			•	5050
20	GO TO 29	:	··· -		2030
	N(JLAS+K1)=0 JLAS=JLAS+1				∠040 ∠050
	K=0				2060
	GO TO B				2070
10	K=K+]	•		·.	2080
	N(J,K)=L	•			2090 2100
C FI	ND KODE (J.L) AND SEMBO	L(KOO)			2110
	SMBOL (IBO) = CYMBUL (LOB)			2120
	MODE=NEST(Lob) IF(MODE)335,316,335	•		,	2130 2140
335	IF(In(L))5+960+5	•			2150
	KODE(J+L)=IG(L)			•	2160
	GO TO 307				2170
960	CONTINUE KPU=IRO-1	•		•	218n 2190
	IF (KPU) 953+953+315	V	•	v	5500
315	DO 952 KP=1,KPU				2210
				•	, -

222

223L

2241

225 m

2260

2270

2290 2290

2304

2310

2320

2330

234 ñ 235 n

2366

2376

2340

2390

2410

2420 2436 2446

2450

2470 2480 2490

2506

2514

2520

2530

2540

2554

2550

2590

2600

2020

2631

2641

2650

2660

2670

2690

2700

2730

2740

276K

2770

2800

2810

```
IF (SMBOL (IUn) . NE . SMBOL (KP)) GO TO 952
       LOBX=MIX(KP)
       IF (KONSU(LOA) -KUNSU(LOBX)) 952.956.952
  956 LX#NLAST(LUBX)
       KODE (J+L) = 16 (LX)
       GO TO 307
  952 CONTINUE
       IF (SMBOL (IBO) . EQ. ONE) GO TO 316
  953 1G(L)=MG
       K00=K00+1
       SEMBOL (KOO) = SMBUL (IBO)
       KODE(J_{\bullet}L) = I_{G}(L)
       IF (KONSU(LOR))3,3,2
    2 \text{ KONS}(\text{KOO}) = 1
    3 CONTINUE
       GO TO 305
  316 KODE(J_1L)=0
       GO TO 307
   19 LT(JLAS)=K
       K11 = K + 1
       N(JLAS,K11) =U
C
                       PROGRAM MAIN--3
C
                       NULL CERTAIN ARRAYS. SET COUNTERS. AND DEFINE
                       A CODE FOR EACH NODE OF THE SEG
       MPL = 0
       KIK=1
       LILEI
       DO 601 KAM= TONEXPS
      UD 601 KIM=1.NTO
  601 POLY(KAM, KIM) =0
       00 602 KP1=1 , NEXPS
  602 MSORT (KP1) = U
       00 950 KUZ=1,NSPT
  950 \text{ KODI (KO2)} = 0
       DO 603 KP2=1.NTO
  603 KSORT(KP2)=n
       IR=1
       NFIR=1
       KN0=0
       KODES(1)=1
       00 2000 JS=2 , NNG
 2000 KODES(JS) = 2 + KODES(JS-1)
       IF (LISTP) 175, 175, 1116
 1116 WRITE (6,170) NIN, NOUT
  170 FORMAT (17H GATHS FROM NOVE 12.9H TO NOVE 12//)
       WRITE (6,1905)
 1905 FORMAT (5X, 17HNO.
                               NOUL LIST)
  175 CONTINUE
       IF(LISTP)1113,1113,23
 1113 K3=LT(NIN)+1
      N(NIN_0K3)=0
       K2=LT(1) +1
       N(1,K2) = -1
       NINEl
       NOUT=1
       KLAS=0
   24 NFIR=0
```

	IF(LISTC)1209 219 CONTINUE WRITE(6,177) 177 FORMAT(1X,80C) WRITE(6,1905) KNO=0 209 CONTINUE			 2830 2840 2850 2860 2870 2880 2690 2900
C C C		PROGRAM MAIN4 PATH-FINDING ALGUR IN ADDITION, STEP CODE, CUNSIANT, AN	PF7 CALCULATES	2920 2930 2940 2950 2960
c 1	PF1 (PRELIMINAPY 100 1112 IZO=1 112 IFLOW(IZO)=U 100 31 I1=1+NNO 31 KONC(I1)=1 NOP=KLAS KLAS=0	• NNG		 2970 2980 2990 3000 3010 3020 3030
c	25 K=KONC(J) SE K=KONC(J)	1 1		3050 3060 3070 3080 3090 3100 3110
00000	PF2 (FIND NEXT NO NP(I)=N(J+K) PF3 (TEST ROUTING IF(N(J+K))100 PF4 (TEST FOR FLO	G MATRIX) +60+34		3120 3130 3140 3150 3160 3170 3180 3190
	34 NJK=M(J•K) IF(IFLOW(NJK)) 26 KONC(J)=KONC(, GO TO 25	150,38,26		3200 3210 3220 3230 3240
C	PF5 (PREPARE FOR 3B J=NP(I) IFLOW(J)=1 I=I+1 GO TO 25	NEXT NODE)		3240 3250 3260 3270 3280 3290 3300
CC	PF6 (BACKSTEP) 60 IFLOW(J)=0 KONC(J)=1 J=NP(I=2) KONC(J)=KONC(L) I=I=1 GO TO 25	J)+1	· · · · · · · · · · · · · · · · · · ·	3310 3320 3330 3340 3350 3360 3370
C C	PF7 (FINISH PATH) 50 KONC(J)=KUNC(, KLAS=KLAS+1	U) + 1		 3380 3390 3400 3410 3420
С	FIND CODE FOR NO	DDE PATH		343 n

```
3446
      NPCODE (IR) = A
                                                                                       345
      1SU=I-1
                                                                                       3460
      UO 2002 IS=1.ISU
                                                                                       3476
      NODS=NP(IS)
 2002 NPCODE(IR) = NPCODE(IR) + KODES(NOUS)
                                                                                       3490
C
C
    CALL ARRAY AND WRITE
                                                                                       3500
                                                                                       351 ₹
      IF (NFIR. EQ. 1) GO TO 179
                                                                                       ئ 52 گ
      IF (LISTC) 1208,1208,1206
                                                                                       3530
 1206 CONTINUE
                                                                                       354 Fm
      KRU=I
                                                                                       355
  179 KN0=KNU+1
                                                                                       356H
      WRITE (6,110) KNO, (NP (KR), KR=1, KRU)
                                                                                       3570
  110 FORMAT (4X+73+6X+3513)
 1208 CONTINUE
                                                                                       35H1
                                                                                       359
      IF (NFIR.EQ.1)60 TO 320
                                                                                       3600
      KODET(IR) = 0
                                                                                       3619
                                                                                       362
      CONST(IR)=1.
                                                                                       3635
      IXPOT (IR) = U
      IEND=I
                                                                                       3640
      DO 319 KEW=2. IEND
                                                                                       365
                                                                                       3661
      JNODE=NP(KEW-1)
                                                                                       367n
      LNODE=NP (KEW)
      KODET (IR) = KOUET (IR) + KODE (UNODE + LNODE)
                                                                                       368A
      CONST (IR) = CONST (IR) * CONS (JNODE , LNODE)
                                                                                       369
                                                                                       3104
       IXPOT(IR) = IXPOT(IR) + IXPO(JNOUE + LNOUE)
  319 CONTINUE
                                                                                       3710
      CONEW=CONST (IR)
                                                                                       372F
                                                                                       373
       IXNEW=IXPOT (IR)
      KONEW=KODET(IR)
                                                                                       3740
      CALL ARRAY (1. CONEW. IXNEW. KONEW. POLY, LIL, KIK)
                                                                                       3752
  320 CONTINUE
                                                                                       376
C
                                                                                       3776
C
                                                                                       3/40
                                                                                       3735
      IR=IR+1
                                                                                       380
      IF (IR-NPAC) 1361, 1361, 1360
 1360 WRITE (6,1362)
                                                                                       3810
 1362 FORMAT(1x,39HNO. OF CIRCUITS EXCEEDS LIMIT-INCREASE,
                                                                                       3820
     126HDIMENSIONS CONTAINING NPACE
                                                                                       383
 1361 CONTINUE
                                                                                       3 H 4 4
       GO TO 25
                                                                                       385n
                                                                                       3840
                                                                                       387
C
                       PROGRAM MAIN--5
                                                                                       38หัก
C
                       MUDIFY THE SEA BY REMOVING EVERY BRANCH CONNECTED
                                                                                       380n
C
                       TO THE NOVE THROUGH WHICH ALL CIRCUITS HAVE JUST
                                                                                       390
C
                       BEEN FOUND
                                                                                       فسأز لالح
                                                                                       3920
                                                                                       393
  100 13=0.
       IF (NCIR-1) 2 10 102 + 2010
                                                                                       3950
  102 CONTINUE
                                                                                       396n
       IF (NF IR-1) 104,2010,104
  103 K4=LT(N1N)+1
      N(NIN,K4)=0
                                                                                       3990
      K5=LT(1)+1
                                                                                       400
      N(1,K5)=-1
                                                                                       401
      NIN=1
                                                                                       4020
      NOUT=1
                                                                                       4030
       GO TO 24
                                                                                       40
```

104	IF (NIN-JLAS, 105, 200, 20)) · ·	-		•	4050
				•		
105	NINEJOI					4060
	NOUT=J+1					4070
	KONC(J)=1				•	4080
			•			,
	NY=LT(J)+1			• •		4090
	N(J,NY)=0	•			•	4100
						4110
	DO 109 JC=NTN.JLAS	•	• • • • •		·	
	LCOL=LT(JC)					4120
						4130
	IF (LCOL.EQ.A) GO TO 109					
	IF (N(JC, LCOL) -J) 109, 10	7 • 109	t -		* .	4140
	$N(JC \circ LCUL) = 0$	• • •				4150
107			•			
	LT(JC)=LT(JC)-1					4160
. 100	CONTINUE					4170
107						
	NZ=LT(NIN)+j		•			4180
	N(NIN,NZ) = -1					4190
•						
	NOUT=NIN		• • • • • •		·	4200
	GO TO 23					4210
2.10						4220
2010	CALL SECOND (T3)	``				
	TPATH=13-12	· · · · ·			•	4230
						4340
	WRITE (6,2015) NOP . TPATH					4240
2012	FORMAT (1x , 1 OHTIME FOR)	FINDING,Iln.1	7H PATHS IN	SECONDS.F1	5.3/)	4250
~ . • •	IF(NCIR-1)250,103,250					4260
200	CONTINUE					4270
	NOL=KLAS		•		•	4280
		•		`.		
	CALL SECOND(T4)	•	•			4290
	IF (T3) 2014, 2020, 2014					4300
				2		
2014	TCIR=14-13	*		•		4310
	60 TO 2016	·•				4320
			· ·			
	TCIR=T4-T2		i.			4330
2016	WRITE (6, 160a) NOL, TCIR		·			4340
	FORMAT (1X, 16HTIME FOR)	COUNTAGE TIME	AN ETDER NO	ED 10000 /		4350
1003		THOTHROTTE	SU LIPS! OU!	PER EUDPY 1		
	111H IN SECUNDSOF15.3/)					4360
	111H IN SECONDS + F15.3/)			1		
	111H IN SECUNDS F15.3/)).		4370
;	111H IN SECUNDS.F15.3/)					
		1A i N=∞6)		4370 4380
С	PROGRAM I	· -	.nc)		4370 4380 4390
	PROGRAM I	MAIN6 DNU ORDER LOC	PS)		4370 4380 4390 4400
С	PROGRAM I	· -	PS			4370 4380 4390 4400
С	PROGRAM I	· -	PS			4370 4380 4390 4400 4410
С	PROGRAM FIND SEC	· -	PS			4370 4380 4390 4400 4410 4420
С	PROGRAM FIND SEC	· -	PS			4370 4380 4390 4400 4410 4420
С	PROGRAM FIND SECONOL=KLAS	· -	PS			4370 4380 4390 4400 4410 4420 4430
С	PROGRAM FIND SECONOL=KLAS KHOL=0	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440
С	PROGRAM FIND SECONOL=KLAS	· -	PS			4370 4380 4390 4400 4410 4420 4430
C C	PROGRAM IN FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1 NPAC	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450
C C	PROGRAM FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1+NPAC NOCTOT(KOW)=0	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450 4460
C C	PROGRAM IN FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1 NPAC	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450
C C	PROGRAM FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1+NPAC NOCTOT(KOW)=0 LOW1=NOP+1	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470
C C	PROGRAM FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480
C C	PROGRAM P FIND SECONDLESS AND SECOND	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490
C C	PROGRAM P FIND SECONDLESS AND SECOND	· -	PS			4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490
C C	PROGRAM P FIND SECONDELECTION OF THE PROGRAM P PROGRAM P FIND SECONDELECTION OF THE PROGRAM P NOCEONOCTOT (KOW) TO LOWIENOP+1 NOCEONOCEONOCEONOCEONOCEONOCEONOCEONOCE	· -	PS			4370 4380 4390 4400 4410 4420 4420 4430 4440 4450 4450 4460 4470 4490 4500
C C	PROGRAM P FIND SECONDELECTOR S	· -	PS			4370 4380 4400 4410 4420 4420 4430 4440 4450 4450 4460 4470 4490 4510
C C	PROGRAM P FIND SECONDELECTION OF THE PROGRAM P PROGRAM P FIND SECONDELECTION OF THE PROGRAM P NOCEONOCTOT (KOW) TO LOWIENOP+1 NOCEONOCEONOCEONOCEONOCEONOCEONOCEONOCE	· -	PS			4370 4380 4390 4400 4410 4420 4420 4430 4440 4450 4450 4460 4470 4490 4500
C C	PROGRAM FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*,NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*,NOL	OND ORDER LOC				4370 4380 4400 4410 4420 4420 4430 4450 4450 4470 4480 4510 4520
C C	PROGRAM A FIND SECO NOL=KLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE	OND ORDER LOC				4370 4380 4400 4400 4410 4420 4420 4430 4450 4460 4470 4490 4510 4510 4530
C C	PROGRAM FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*,NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*,NOL	OND ORDER LOC				4370 4380 4400 4410 4420 4420 4430 4450 4450 4470 4480 4510 4520
C C	PROGRAM A FIND SECO NOL=KLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW) TO LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN) 202*201*202	OND ORDER LOC				4370 4380 4400 4400 4420 4420 4420 4450 4450 445
C C	PROGRAM FIND SECONOL=KLAS KHOL=0 DO 257 KOW=1,NPAC NOCTOT(KOW) TO LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN)202*201*202 CONTINUE	PCODE(LIKZ)				4370 4380 4430 4430 4420 4430 44430 4450 4450 4510 4510 4510 4510 4510
C C	PROGRAM FIND SECONDL S	PCODE(LIR2) ST(LIR2)				4370 4380 4400 4400 4420 4420 4420 4450 4450 445
C C	PROGRAM FIND SECONDL S	PCODE(LIR2) ST(LIR2)				4370 43890 44300 4430 44430 44430 44450 4450 4550 45
C C	PROGRAM FIND SECONDLEKLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*,NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*,NOL NAN=NPCODE(LIR1)*AND*,NE IF(NAN)202*,201*,202 CONTINUE TCONSZ=CONST(LIR1)*CONSKXPOZ=IXPOT(LIR1)*IXPO	PCODE(LIRZ) ST(LIRZ) F(LIRZ)				4370 43890 44300 44400 44400 44400 44490 44500 45500 45500 4570
C C	PROGRAM FIND SECONDLEKLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW)**O LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NF IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONSKXPOZ=IXPOT(LIR1)*IXPO*KSYM2=KODET(LIR1)*KODE*	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ)				4370 43890 44800 44800 44800 44800 44890 45560 45560 45560 45560 4570
C C	PROGRAM FIND SECONDLEKLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*,NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*,NOL NAN=NPCODE(LIR1)*AND*,NE IF(NAN)202*,201*,202 CONTINUE TCONSZ=CONST(LIR1)*CONSKXPOZ=IXPOT(LIR1)*IXPO	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ)				4370 43890 44800 44800 44800 44800 44890 45560 45560 45560 45560 4570
C C	PROGRAM A FIND SECO NOL=KLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONS KXPOZ=IXPOT(LIR1)*IXPOT KSYM2=KODET(LIR1)*KODET CALL ARRAY(2*TCONS2*KXE	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ)				4370 43890 44410 4
C C	PROGRAM FIND SECONDELLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN)202*201*202 CONTINUE TCONS2=CONST(LIR1)*CONS KXPO2=IXPOT(LIR1)*CONS KXPO2=IXPOT(LIR1)*KODE CALL ARRAY(2*TCONS2*KXE KHOL=KHOL+1	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ)				433900 433900 643900 6444
C C	PROGRAM A FIND SECO NOL=KLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONS KXPOZ=IXPOT(LIR1)*LXPOT KXPOZ=IXPOT(LIR1)*KODET CALL ARRAY(2*TCONS2*KXE KHOL=KHOL+1 NOC=NOC+1	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ)				4370 43890 44410 4
C C	PROGRAM A FIND SECO NOL=KLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL-1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONS KXPOZ=IXPOT(LIR1)*LXPOT KXPOZ=IXPOT(LIR1)*KODET CALL ARRAY(2*TCONS2*KXE KHOL=KHOL+1 NOC=NOC+1	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ)				433900 433900 6433900 64444 64444 64444 64444 64444 6444
C 257	PROGRAM A FIND SECO NOL=KLAS KHOL=0 DO 257 KOW=1*NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NE IF(NAN)202*201*202 CONTINUE TCONS2=CONST(LIR1)*CONS KXPO2=IXPOT(LIR1)*LXPO* KXPO2=IXPOT(LIR1)*KODE* CALL ARRAY(2*TCONS2*KXE KHOL=KHOL+1 NOC=NOC+1 IF(NOC=NEON)1396*1396*	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ)				433900000000000000000000000000000000000
C C 257	PROGRAM (FIND SECONDELLAS) NOL=KLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NOL IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONS KXPOZ=IXPOT(LIR1)*CONS KXPOZ=IXPOT(LIR1)*KODE CALL ARRAY(2*TCONS2*KXO KHOL=KHOL+1 NOC=NOC+1 IF(NOC=NEON)1396*1396*1 WRITE(6*1397)	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) POZ•KSYMZ•POL	.Y•LIL•K[K)			433900 433900 6433900 64444 64444 64444 64444 64444 6444
C C 257	PROGRAM (FIND SECONDELLAS) NOL=KLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NOL IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONS KXPOZ=IXPOT(LIR1)*CONS KXPOZ=IXPOT(LIR1)*KODE CALL ARRAY(2*TCONS2*KXO KHOL=KHOL+1 NOC=NOC+1 IF(NOC=NEON)1396*1396*1 WRITE(6*1397)	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) POZ•KSYMZ•POL	.Y•LIL•K[K)	ARRAY NOT	CH)	438900 438900 444300 44434 4444 4444 4444 4450 4533 45567 8900 1000 1000 1000 1000 1000 1000 1000
C C 257	PROGRAM (FIND SECONOL SECONOL SECONOCTOT (KOW) TO LOWISNOP+1 NOC=0 NOLI=NOL-1 DO 203 LIRI=LOWI*NOLI LOWE=LIRI+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIRI)*AND.NE IF (NAN) 202*201*202 CONTINUE TCONSZ=CONST(LIRI)*CONSKXPOZ=IXPOT(LIRI)*CONSKXPOZ=IXPOT(LIRI)*CONSKXPOZ=IXPOT(LIRI)*CONSCKXPOZ=IXPOT(LIRI)*CON	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) POZ•KSYMZ•POL	.Y•LIL•K[K)	ARRAY NOT	CH)	4370 43890 600 600 600 600 600 600 600 600 600 6
C C 257	PROGRAM (FIND SECONDELLAS) NOL=KLAS KHOL=0 DO 257 KOW=1*,NPAC NOCTOT(KOW)=0 LOW1=NOP+1 NOC=0 NOL1=NOL=1 DO 203 LIR1=LOW1*NOL1 LOW2=LIR1+1 DO 202 LIR2=LOW2*NOL NAN=NPCODE(LIR1)*AND*NOL IF(NAN)202*201*202 CONTINUE TCONSZ=CONST(LIR1)*CONS KXPOZ=IXPOT(LIR1)*CONS KXPOZ=IXPOT(LIR1)*KODE CALL ARRAY(2*TCONS2*KXO KHOL=KHOL+1 NOC=NOC+1 IF(NOC=NEON)1396*1396*1 WRITE(6*1397)	PCODE(LIRZ) ST(LIRZ) T(LIRZ) T(LIRZ) T(LIRZ) POZ•KSYMZ•POL	.Y•LIL•K[K)	ARRAY NOT	CH)	438900 438900 600 600 600 600 600 600 600

```
4661
      NOTCH(NOC)=LIR2
                                                                                    4670
  202 CONTINUE
                                                                                    4680
  203 NOCTOT(LIR1) = NOCT
                                                                                    4691
      NOCTOT (NOL) = NOC
                                                                                    4704
                                                                                    4710
                                                                                    4720
¢
                      PROGRAM MAIN--7
C
                      FIND ALL LOOPS OF ORDER
                   - GREATER THAN 2
C
                                                                                    4750
                                                                                    4766
                                                                                    4770
       GENERATE THE FIRST ROW OF ISET
¢
                                                                                    4780
      NIPL=NOP+1
                                                                                    4790
      KAPMAX=1
                                                                                    480¢
      INK0=1
      DO 1170 ISC=NIPL+NOL
                                                                                    4816
      INK1=NOCTOT(ISC)
                                                                                    4820
      IF (ISC=1) 1171+11/1+1172
                                                                                    4830
 1172 INK2=NOCTOT(ISC-1)+1
                                                                                    4846
                                                                                    4856
      GO TO 1173
 1171 INK2=1
                                                                                    4860
 1173 IF (INK1-INK2-INKU) 1170, 1170, 1175
                                                                                    4876
 1175 INKO=INK1-INK2
                                                                                    48AL
 1170 CONTINUE
                                                                                    4840
      IF (INKO-NCI) 1391,1391,1340
                                                                                    4900
                                                                                    491
 1390 WRITE (6,1392) INKO
 1392 FORMAT(1X.52HINCREASE NCI-THE NO. OF COLUMNS IN DIMENSION OF (SET)
                                                                                    4928
                                                                                    4430
 1391 CONTINUE
      DO 490 NIP=NIPL, NOL
                                                                                    494
      INKU=NUCTOT(N[P)
                                                                                    495
                                                                                    4960
      1F(NIP=1)21U,210,211
                                                                                    4976
  211 INKL=NUCTOT(NIP=1)+1
      60 TO 212
  210 INKL=1
                                                                                    4995
  212 CONTINUE
                                                                                    5000
      IF (INKU-INK) ) 490,490,410
                                                                                    501
                                                                                    5021
  410 JIP=0
      DO 480 INK=INKL, INKU
                                                                                    5030
      JIP=JIP+1
                                                                                    5040
  480 ISET(1+JIP) =NOTCH(INK)
                                                                                    505
      MAPO(NIP)=INKU-INKL+1
                                                                                    5061
                                                                                    5070
C
       INIATE PROCESS FUR FINDING
                                                                                    5089
       HIGHER ORDER LOOPS
C
      DO 430 KAT=1 , NPAC
                                                                                    5100
      JAC (KAT) =0
                                                                                    5116
  430 NUP (KAT) = 0
      JAC(1)=MAPO(NIP)
                                                                                    5134
      KAP=2
                                                                                    5140
  440 KAP=KAP-1
      IF(KAP)490,490,429
  425 KAP=KAP+1
                                                                                    5170
      IF (KAP-NRI) 1350+1350+1351
                                                                                    51 HA
 1351 WRITE (6,1352)
 1352 FORWAT (1x, 49HINCHEASE NRI-THE NO. OF ROWS IN DIMENSION OF ISET)
                                                                                    521/4
 1350 CONTINUE
                                                                                    5210
      NUP (KAP) =0
                                                                                    527
  429 KAP1=KAP+1
                                                                                    25
      JAC(KAP1)=0
                                                                                    5240
      NUP (KAP) = NUP (KAP) +1
                                                                                    5250
C
                                                                                    52
```

С	*				
	LABEL LOUP OF FIRST CKT	** *		5270	n
				•	
	NAP=NUP (KAP)		•	5280	
	IF (KAPMAX-KAP) 1347,1348,1348	•		529(0
				5300	
1.347	KAPMAX=KAP				
1348	CONTINUE			5310	0
, 5	ISAT=ISET (KAP, NAP)			5320	
_	TONI = TOUT (NAM + NAM)				
С	+-			5330	n
C	TEST LOOP OF REMAINING CKTS		•	534(0
Ç			•		
	MAPU=JAC(KAP)			5350	0
	MAPI =NUP (KAP) +1	• •	** ** ***	5360	0
	••		•		
	DO 435 MAPI=MAPL+MAPU			537(O
	ISOT=ISET(KAP+MAPI)			5380	0
				5390	
	KAN=NPCOUE(ISAT) . AND . NPCODE(ISOT)			- ·	
	IF (KAN) 435 • 455 • 435			5400	()
455	CONTINUE			5410	Λ
	CONTINUE				
С				5420	
С	WRITE	•	•	5430	0
_				5440	
	TCONSG=CONST(NIP)				
	KXPOG=IXPOT(NIP)	•	•	5450	0
	KSYMG=KODET(NIP)		/	5460	n
					-
	DO 477 LPO=1+KAP	•		547	
	ITIC=NUP(LPU)			5480	n
	ITUCH=ISET(LPO,ITIC)			5490	
	TCONSG=TCUNGG#CUNST(ITUCH)	•	•	5500	n
	KXPOG=KXPOG+1XPOT(ITUCH)	•	•	5510	Λ
			•		
477	KSYMG=KSYMG+KODET (ITOCH)		•	552(0
•	TCONSG=TCONsG*CONST(ISOT)	•	•	5530	Λ
	KXPOG=KXPOG+IXPOT(ISOT)		·	· 554(
	KSYMG=KSYMG+KODET(ISOT)	-		5550	Ú.
	KAPP=KAP+2			5560	Λ
		· · · · · · · · · · · · · · · · · · ·			-
	CALL ARRAY (KAPP . TCONSG . KXPOG . KSYMO	19P0LY9L1L9	KIK)	5576	0
	KHOL=KHOL+1			55ส์เ	'n
_	· · ·				
С	SET COUNTERS			5591	
423	KAP1=KAP+1	•		5600	n
				5610	
		•	,		
	JAC(KAP1) = JAC(KAP1) +1	•		1.4.2	
	JACKAPI)=JAC(KAPI)+1 JACK=JAC(KAPI)	,		5626	n
	JACK=JAC(KApl)				
. •	JACK=JAC(KAP1) ISET(KAP1,JACK)=ISET(KAP,MAPI)			563(n
435	JACK=JAC(KAP1) ISET(KAP1.JACK)=ISET(KAP.MAPI) CONTINUE				n
435	JACK=JAC(KAP1) ISET(KAP1.JACK)=ISET(KAP.MAPI) CONTINUE			563(564)	0 0
435	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl)			563(564) 565(0 0 0
	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425			563(564) 565(566)	0 0 0
	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl)			563(564) 565(0 0 0
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,425			563(564) 565(566) 567(0 0 0 0
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE			563(564) 565(566) 567(568)	0 0 0 0
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL+KIK)			563(564) 565(566) 567(568) 569(000000
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL+KIK)			563(564) 565(566) 567(568) 569(000000
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1.,0,0,POLY,LIL,KIK) CALL SECOND(15)			563(564) 565(566) 567(568) 569(570)	0 0 0 0 0 0 0
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,0,0,POLY,LIL,KIK) CALL SECOND(15) INTL=T5-14			5630 5640 5650 5660 5670 5690 5700 5710	0000000
431	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1.,0,0,POLY,LIL,KIK) CALL SECOND(15)			563(564) 565(566) 567(568) 569(570)	0000000
431 490	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL		ř/	5630 5640 5650 5660 5670 5690 5710 5710	00000000
431 490	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1.,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10	,8H SETS O	f /	5630 5640 5650 5660 5670 5690 5710 5710 5720 5730	0 0 0 0 0 0 0 0 0
431 490	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL	,8H SETS O	F/	5630 5640 5650 5660 5670 5690 5710 5710 5720 5730 5740	0 0 0 0 0 0 0 0 0
431 490	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1.,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10	,8H SETS O	F/	5630 5640 5650 5660 5670 5690 5710 5710 5720 5730 5740	0 0 0 0 0 0 0 0 0
431 490	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1.,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10	,8H SETS O	F/	563(564) 565(566) 567(569) 571(572) 573(574)	
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421.425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440.429 CONTINUE CALL ARRAY(2.1.,0.0,POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10 30H NONTOUCHING LOOPS, IN SECONDS,	,8H SETS O	F/	5630 5640 5650 5660 5670 5690 5710 5710 5710 5710 5710 5710 5710 571	
431 490	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421.425.425 IF(JAC(KAP)=NUP(KAP)=1)440.440.429 CONTINUE CALL ARRAY(2.10.0.POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6.1604) KHOL.TNTL FORMAT(1X,1(HTIME FOR FINDING .110 30H NONTOUCHING LOOPS. IN SECONDS.	•8H SETS 0 F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421.425.425 IF(JAC(KAP)=NUP(KAP)=1)440.440.429 CONTINUE CALL ARRAY(2.10.0.POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6.1604) KHOL.TNTL FORMAT(1X,1(HTIME FOR FINDING .110 30H NONTOUCHING LOOPS. IN SECONDS.	•8H SETS 0 F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,110 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN8 DECODE COMPOSITE SYM	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5710 5730 5740 5760 5760 5776	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1/HTIME FOR FINDING ,II0 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN=8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5710 5730 5740 5760 5760 5770	00000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,110 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN8 DECODE COMPOSITE SYM	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5710 5730 5740 5760 5760 5776	00000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1/HTIME FOR FINDING ,II0 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN=8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760 5760 5790 5800	000000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1/HTIME FOR FINDING ,II0 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN=8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760 5770 5780 5800 5810	0000000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1/HTIME FOR FINDING ,II0 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN=8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760 5760 5790 5800	0000000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP;MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN=8 DECODE COMPOSITE SYMBOLS INVERSE SYMBOLS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760 5770 5780 5810 5820	00000000000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP;MAPI) CONTINUE JACK=JAC(KApl) IF(JACK=2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN=-8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS INVERSE SYMBOLS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5720 5730 5740 5750 5760 5770 5780 5810 5820 5830	0000000000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421.425.425 IF(JAC(KAP)=NUP(KAP)=1)440,440.429 CONTINUE CALL ARRAY(2.1.,0.0,POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL.TNTL FORMAT(1X,1(HTIME FOR FINDING ,II0 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN8 DECODE COMPOSITE SYMAND ISOLATE SYMHOLS INVERSE SYMHOLS NANU=LIL-1 DO 641 J1=1.NEXPS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5730 5740 5750 5760 5760 5810 5820 5830 5840	0000000000000000000
431 490 1604	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421.425.425 IF(JAC(KAP)=NUP(KAP)=1)440,440.429 CONTINUE CALL ARRAY(2.1.,0.0,POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL.TNTL FORMAT(1X,1(HTIME FOR FINDING ,II0 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN8 DECODE COMPOSITE SYMAND ISOLATE SYMHOLS INVERSE SYMHOLS NANU=LIL-1 DO 641 J1=1.NEXPS	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5690 5710 5730 5740 5750 5760 5760 5810 5820 5830 5840	0000000000000000000
431 490 1604 C C C	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421.425.425 IF(JAC(KAP)=NUP(KAP)=1)440,440.429 CONTINUE CALL ARRAY(2.1.,0.0,POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL.TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS INVERSE SYMBOLS NANU=LIL-1 00 691 J1=1.NEXPS D0 691 J2=1,NTO	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5710 5710 5730 5740 5750 5760 5760 5810 5820 5830 5840 5830	0000000000000000000000
431 490 1604 C C C	JACK=JAC(KApl) ISET(KAPl,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421,425,425 IF(JAC(KAP)=NUP(KAP)=1)440,440,429 CONTINUE CALL ARRAY(2,1,,0,0,POLY,LIL,KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL,TNTL FORMAT(1X,1(HTIME FOR FINDING ,110 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAINR DECODE COMPOSITE SYMAND ISOLATE SYMBOLS INVERSE SYMBOLS NANU=LIL-1 DO 641 J1=1,NEXPS DO 691 J2=1,NTO POLYU(J1,J2)=0	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5680 5770 5730 5730 5740 5750 5760 5770 5780 5810 5820 5830 5840 5850 5860	00000000000000000000000
431 490 1604 C C C	JACK=JAC(KApl) ISET(KAP1,JACK)=ISET(KAP,MAPI) CONTINUE JACK=JAC(KApl) IF(JACK-2)421.425.425 IF(JAC(KAP)=NUP(KAP)=1)440,440.429 CONTINUE CALL ARRAY(2.1.,0.0,POLY,LIL.KIK) CALL SECOND(15) TNTL=T5-T4 WRITE (6,1604) KHOL.TNTL FORMAT(1X,1(HTIME FOR FINDING ,I10 30H NONTOUCHING LOOPS, IN SECONDS, PROGRAM MAIN8 DECODE COMPOSITE SYMAND ISOLATE SYMBOLS INVERSE SYMBOLS NANU=LIL-1 00 691 J1=1.NEXPS D0 691 J2=1,NTO	•8H SETS O F15•3/)		5630 5640 5650 5660 5670 5710 5710 5730 5740 5750 5760 5760 5810 5820 5830 5840 5830	00000000000000000000000

```
584₫
      00 693 J2=1.NSPTU
                                                                                   589 (F
      SEMPON(J1.J2)=STAR(1)
                                                                                    5900
      SEMPOD(J1,J2)=STAR(1)
                                                                                    591 C
      SIMBON(J1.J2)=SB
                                                                                    592d
  693 SIMBOD (J1+J2) = SH
                                                                                   5930
      DO 951 J4=1.NTO
                                                                                   5940
      NA(J4)=0
  951 NR(J4)=0
                                                                                    5970
C
   DECODE KSORT (J7) AND RECORD TERMS
   CONTAINING FEEYBACK SYMBOL #F3#
                                                                                    548C
C
                                                                                    5994
      JZU=LIL-1
      DO 646 JZ=1,JZU
                                                                                    6001
                                                                                    6011
      KODY=KSORT(JZ)
                                                                                    $00d
      ITOP(JZ)=0
      1F (KODY) 715,646,715
                                                                                    603d
  715 CALL DECODE(KOO,KODY,IZ,FB,JZ,SEMBOL,KODF,KODI,ITOP,KBASTS)
                                                                                    6040
                                                                                    605m
C
   ISOLATE NUM. SYMBOUS AND INVERSE SYMBOUS
                                                                                   607ñ
  OF KSORT(JZ)
                                                                                   60An
  637 NAK=0
      NAT=0
                                                                                   6091
      IF (77) 646,646,647
  647 CONTINUE
                                                                                    0110
      DO 645 NZ=1.1Z
                                                                                    6120
      KOZY=KODI(NZ)
      IARG=KÜDF(N7)
                                                                                    6146
      IF (IARG=NRS) 1340 + 1340 + 1341
                                                                                    6150
 1341 WRITE (6,1342)
                                                                                   6166
 1342 FORMAT(1X,30HINCREASE THE DIMENSION OF STAR)
 1340 CONTINUE
                                                                                    61An
      IF (KONS (KOZY)) 657,657,659
                                                                                    619æ
  657 NAK=NAK+1
                                                                                   0206
      IF (NAK-NSPTH-1) 1376.1375.1375
                                                                                    621 fr
 1375 WRITE (6, 1371)
                                                                                    0220
 1377 FORMAT(1X,40 MNSPT EXCEEDS LIMIT-INCREASE DIMENSIONS .
                                                                                   623{
     115HCONTAINING NSPT)
                                                                                   624
 1376 CONTINUE
                                                                                    6250
      SIMBON (JZ.NAK) = SEMBOL (KOZY)
                                                                                   6266
      SEMPON (JZ.NAK) = STAR (IARG)
                                                                                    627
      NA(JZ) = NA(Jz) + 1
                                                                                   62ዓሾ
      60 TO 645
                                                                                   953n
  659 NAT=NAT+1
                                                                                   631£
      IF (NAT-NSPTU-1) 1381,1380,1380
                                                                                   6311
 1380 WRITF(6,138)
                                                                                    6320
 1382 FORMAT(1X,40HNSPT EXCEEDS LIMIT-INCREASE DIMENSIONS ,
                                                                                    633£
     115HCONTAINING NSPT)
                                                                                    634
 1381 CONTINUE
                                                                                    6356
      SIMBOD (JZ, NAT) = SEMBOL (KUZY)
                                                                                    6360
      SEMPOD(JZ.NAT) =STAR(IARG)
                                                                                    6375
      NR(JZ) = NB(JZ) + I
                                                                                    638
  645 CONTINUE
                                                                                    6390
  646 CONTINUE
                                                                                    640 a
                                                                                    641
                                                                                    642
                      PROGRAM MAIN--9
                                                                                   6430
C
                      SEPARATE POLY INTO ARRAYS FOR THE
C
                     NUMERATUR AND DENUMINATOR OF THE
                      TRANSFER FUNCTION
                                                                                    6457
                                                                                   6471
```

_	T.	T CONSTANT O SECTEMENTS IN THE INVESTED THAT OF	
C		CONSTANT COEFFICIENTS IN THE TRANSFER FUNCTION	64 65
C		E SEPARATED INTO ARRAYS FOR THE NUMERATOR	65
С	ANI	DENOMINATOR	65
		KIKUEKIK-1	,
		00 755 JA=1.KIKU	65 45
		J18=0	65
		Jn=0	65
		DO 755 JC=1, NANU	65
		IF (ITOP (UC)) 753,753,751	65
	751	JIH=JIH+1	65
		POLYU(JA,JIB)=POLY(JA,JC)	65
		GO TO 755	66
	753	J()=J() ← 1	66
		POLY(JA,JD)=POLY(JA,JC)	56
	755	CONTINUE	66
		CALL SECUND(T6)	66
		TDECOD=T6-Ta	66
		WRITE (6,1605) 1DECOD	66
1	605	FORMAT (1x+36HTIME FOR DECODING SYMBOLS IN SECONDS+F15.3/)	66
	J V 3	The second of the first of the management of the second of	66
			66
Ć		PROGRAM MAIN10	67
			67
C		MAKE POWERS OF S IN OUTPUT	67:
C		TRANSFER FUNCTION POSITIVE	67
			67
		MAXIM=0	. 67
		KARU=KIK-1	67
		00 522 KAR=1 KARU	67
		IF (MSORT (KAR)) 521,522,522	67
		IF (MAXIM+MSONT (KAR)) 523,522,522	67
	523	MAXIM==MSORT(KAR)	. 68
	522	CONTINUE	68
		DO 524 KIT=1 . KARU	68
	524	MSORF(KIT)=MAXIM+MSORT(KIT)	68
			68-
			68
С		PROGRAM MAIN11	68
-		PRINT OUT NUMERATOR OF	68
C		THE TRANSFER FUNCTION	- 68
•			68
			69
		LUK=0	69
		IKU=LIL-1	69:
		WRITE (6,931)	69
		WRITE (6.930)	69
		WRITE (6,92A)	
	024	FORMAT (25X*20HNUMERATOR POLYNOMIAL///)	69
	720	· · · · · · · · · · · · · · · · · · ·	69
		WRITE (6,921)	69
	461	FORMAT (1x, oHCOLUMN, 12x, 23HSYMBOL FOR GIVEN COLUMN)	69
		00 905 [K=1, [KU	69°
٠		IF(ITOP(IK), 905, 905, 901	70
	901	ILU=NA(IK)	70
		IF (TLU) 710 • 710 • 711	70
		ILU=1	70
	711	JLU=NB(IK)	70
		IF (JLU) 712,712,713	70
	712	JLU=1	70
		CONTINUE J	70 70

```
710 cf
     1IL=1,ILU),DASH, (SIMBUD(IK,JL),SEMPOD(IK,JL),JL=1,JLU)
                                                                                   711d
  903 FORMAT(1x, 15, 20x, 30A)
                                                                                   7120
  905 CONTINUE
                                                                                   7130
      WRITE (6,930)
  930 FORMAT (//)
                                                                                   7150
      WRITE (6,1821)
                                                                                   7160
 1821 FORMAT(1X.7H
                     POWER)
                                                                                    7170
      WRITE (6,925)
                                                                                   718 C
  922 FORMAT (1x bH
                      UF S +17x+33HCUNSTANT COEFS. IN THE POLYNOMIAL)
                                                                                   719n
      LML=1
                                                                                   7209
      LMU=7
                                                                                   1216
      IF (JIB-LMU) 820,818,818
                                                                                   722 fr
  BZO LMU=JIB
  818 WRITE (6,806) (LO, LO=LML, LMU)
                                                                                   7230
                                                                                   1248
  806 FORMAT (2X, 7 (8X, 6HCOLUMN, 12))
                                                                                   725
      KR()WU=KIK-1
                                                                                   1260
      DO 808 KROW=1,KHOWU
                                                                                   127a
      WRITE (6.81%) MSURT(KROW), (POLYU(KROW, LM), LM=LML, LMU)
                                                                                   7286
  810 FORMAT (15,5H
                         ,7(E12.5,4H
  808 CONTINUE
                                                                                   124 H
                                                                                   7300
      IF (JIB-LMU) 814,814,812
                                                                                   731
  812 LML=LML+7
                                                                                   732
      LMU=LMU+7
      IF (JIB-LMU) a16.818.818
                                                                                   7330
  816 LMU=JIB
                                                                                   7348
                                                                                   735
      GO TO 818
                                                                                   7366
  814 CONTINUE
                                                                                   137n
                                                                                    139F
C
                      PHOGRAM MAIN--12
                                                                                   7400
C
                      PRINT OUT DENOMINATOR OF
C
                                                                                   7411
                      THE TRANSFER FUNCTION
                                                                                   742
                                                                                   1434
      LUK=0
                                                                                   7440
      IKU=LIL-1
                                                                                   745
      WRITE (6,93%)
                                                                                   146
  931 FORMAT (50H####
                                                                                   1470
      WRITE (6.93%)
                                                                                   14RD
      WRITE (6.423)
                                                                                   744
  923 FORMAT (25%, 22HDENOMINATOR POLYNOMIAL///)
                                                                                   7504
      WRITE (6,924)
                                                                                   1510
                                                                                   75%
  924 FORMAT (1X,6MCOLUMN,12X,23HSYMBOL FOR GIVEN COLUMN)
      UO 705 IK=1. IKU
                                                                                   753
      IF (ITOP (IK), 701, 701, 705
                                                                                   7540
  701 ILU=NA(IK)
                                                                                   1550
      LUK=LUK+1
      IF (ILU) 915,915,916
                                                                                   757
  915 ILU=1
                                                                                   75HO
  916 JLU#NB(IK)
                                                                                   759
      IF (JLU) 917, 917, 918
                                                                                   760
  917 JLU=1
                                                                                   16 l'il
  41H CONTINUE
                                                                                   1620
      WRITE (6,703) LUK, (SIMBON(IK, IL), SEMPON(IK, IL),
                                                                                   76
     11L=1,ILU),DASH,(SIMBOD(IK,JL),SEMPOD(IK,JL),JL=1,JLU)
                                                                                   764
  703 FORMAT(1X+15+20X+30A3)
                                                                                   1650
  705 CONTINUE
                                                                                   76 m
      WRITE (6,930)
      WRITE (6, 1822)
                                                                                   7658
 1822 FORMAT (1X+7H
                      POWER)
                                                                                   769n
      WRITE (6,425)
                                                                                   17
```

```
925 FORMAT (1x BH OF S +17X+33HCONSTANT COEFS. IN THE POLYNOMIAL)
                                                                           7710
      LML=1
                                                                            1720
      LMU=7
                                                                           7730
      IF (JD-LMU) 520,518,518
                                                                           7740
  520 LMU≈JD
                                                                           7750
  518 WRITE (6,50%) (L0,L0≈LML,LMU)
                                                                           7760
                                                                           7770
  506 FORMAT(2x,7(8x,6HCOLUMN,12))
      KROWU=KIK-1
                                                                           7780
      DO 508 KRUW=1.KROWU
                                                                           7790
      WRITE (6.51%) MSURT (KROW) . (POLY (KROW.LM) . LM=LML.LMU)
                                                                           7800
  510 FORMAT(I5.3H
                                                                           7810
                                  ))
                     ,7(E12.5,4H
  508 CONTINUE
                                                                           7820
                                                                           7830
      IF (JD-LMU) 514,514,512 -
                                                                           7840
  512 LML=LML+7
                                                                           7850
      LMU=LMU+7
                                                                           7860
      IF (JD-LMU) 516,518,518
  516 LMU=JD
                                                                            7870
                                                                           7880
      GO TO 518
                                                                           7890
  514 CONTINUE
      WRITE (6,930)
                                                                           7900
      CALL SECOND (TENU)
                                                                           7910
      TEXEC=TEND=TSTART
                                                                           792n
      WRITE (6,1161) TEXEC
                                                                           193n
 1161 FORMAT (1x067H EXECUTION TIME IN SECONDS.F15.3//
                                                                           1940
     128H AUGUST 1970 VERSION OF SNAP)
                                                                           7950
                                                                           7960
  250 GO TO 1111
                                                                           7970
     END
      SUBROUTINE SEG(NFIRST+NEAST, IXPON+WEIGT+SYMBUL+KONSO+MTX+NEST+
                                                                           7980
     1LIST.NIN.NOUT.NUD.NOB.LISTG.NODA.NODB)
                                                                           7990
8000
                                                                           8010
   THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NEIWORK
                                                                           8020
C
   CHARACTERISTIC NON (DEFINED IN PROGRAM MAIN=1)
                                                                           8030
      DIMENSION JROW (35), NP (35), IVV (35), NUML (35), ICV (35), INTREE (35)
                                                                           8040
      DIMENSION LINC (35)
                                                                           8050
      DIMENSION NF (35,35), 18 (35,35), NS (35,35)
                                                                           8060
      DIMENSION TYPH (35) , JH (35) , LB (35) , MSYM (35)
                                                                           8070
      DIMENSION IMUAL (35) . VAL (35) . SYM (35)
                                                                           8080
     DIMENSION IQUALX(35) + VALX(35) + NUMLX(35) + INTPE(35) + NOTREE (35)
                                                                           8090
     DIMENSION TYPX (36) , NIMX (35) , JBX (35) , LBX (35) , SYMX (35)
                                                                           8100
8110
                                                                           6120
   THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
C
                                                                           8130
   CHARACTERISTIC NBG
C
                                                                           8140
     DIMENSION CVAL (100)
                                                                           8150
     DIMENSION NFIRST(100) , NLAST(100) , TXPON(100) , WEIGT(100)
                                                                           8160
      DIMENSION MAPY(100).KUNSU(100).NEST(100).TYPL(100)
                                                                           817n
      DIMENSION SYMBUL (100) + MIX(100)
                                                                           8180
8196
      COMMON NF , NS , I &
                                                                           820n
      COMMUN/C2/NNG, NBG
                                                                           8210
C
                                                                           6229
C
      SUBPROGRAM #A#
                                                                           6230
     DATA Y.G.C.TU.R.CL.Z/2HY .2HG .2HC .1H=.2HR .2HL .2HZ /
                                                                           8240
     DATA E.CI,CC.CV.VV.VC/ZHE ,ZHI .ZHCC.ZHCV.ZHVV.ZHVC/
                                                                           8250
     DATA FB/3H FB/
                                                                           8260
      DATA ONE/3H 1/
                                                                           8270
      DO 710 IC=1.NNG
                                                                           4284
     DO 710 IK=1.NNG
                                                                           8290
     NS(IC_{\theta}IK)=0
                                                                           8300
  710 NF(IC \cdot IK)=0
                                                                           831n
```

```
8320
      LINK=0
      00 152 IG=1,NBG
                                                                                    8330
                                                                                    8340
      NEST (IG) =0
                                                                                    835ne
  152 KONSO([G)=0
                                                                                    8360
      WRITE (6,26%)
  260 FORMAT (//)
                                                                                    8370
      WRITE (6.717)
                                                                                    83RA
                                                                                    8390
  717 FORMAT (30X+7HNETWORK/)
      NLAST(1)=NIN
                                                                                    8400L
      IXPON(1)=0
                                                                                    8410
                                                                                    8420
      WEIGT(1) = -1.
                                                                                    8430
      SYMBUL(1)=FR
                                                                                    844n
      KONSO(1) = 0
                                                                                    8450
      NEST (1) =1
                                                                                    8450
      MORD
                                                                                    8470
      L0=0
                                                                                    8490
      LIST=1
                                                                                    849n
      KLU=0
      DO 5 11=1.NNG
                                                                                    გ50 წ
      INTREE(I1) = U
                                                                                    8510
    5 JROW(I1)=0
                                                                                    8520
      DO 528 I=1.NOH
                                                                                    d536
      READ(5.9) TyPX(I).NUMX(I).JBX(I).LBX(I).SYMX(I).
                                                                                    8547
     1 I QUALX (I), VOLX (I), NUMLX (I)
                                                                                    855n
      IF(TYPX(I).EQ.CC)60 TO 1300
                                                                                    8569
      IF(TYPX(I).FQ.CV)GO TO 1300
                                                                                    8570
      IF (TYPX(I) "EW.VV)GO TO 1300
                                                                                    8596
      IF(TYPX(1).EQ.VC)GO TO 1300
                                                                                    4590
      GO TO 1301
                                                                                    860 M
 1300 IF (NUMLX(I), 1301.1302.1301
                                                                                    86,14
 1302 WRITE(6,1303)
                                                                                    8620
 1303 FORMAT(1X,49H###ERROR###CONTROL SPECIFICATION FOR DEP. SOURCE .
                                                                                    8630.
     17HMISSING)
                                                                                    864F
      NOB=0
                                                                                    665 6
     -GO TO 1305
                                                                                    6660
 1301 CONTINUE
                                                                                    8675
  528 CONTINUE
                                                                                    668
    9 FORMAT (A2+13+215+1X+A3+A1+E12+5+13)
                                                                                    8690
      WRITE (6,261)
                                                                                    8700
  261 FORMAT(2x, 3) HELEMENT ELLMENT INITIAL TERMINAL,
                                                                                    871
     128H ELEMENT ELEMENT ELEMENT NO.)
      WRITE (6,262)
                                                                                    8730
  262 FORMAT (2X, 30H TYPE"
                             NUMBER
                                       NUDE
                                                  NOUE "SYMBOL.
     H0S1
             VALUE OF CONTROL)
      DO 601 M=1+NOH
                                                                                    8760
  601 WRITE(65600);TTYPX(M);NUMX(M);JBX(M);TLBX(M);SYMX(M); :
                                                                                    8770
     11QUALX(M) . VALX(M) . NUMLX(M)
                                                                                    87P
  600 FORMAT (4x, A2, 6x, 12, 6x, 12, 6x, 12, 6x, A3, A1, E12, 5, 2x, 12)
                                                                                    879
      CALL FTREE (TYPX, JBX, LBX, INTRE, NOTREE, NOD, NOB)
                                                                                    8800
                                                                                    8816
Ċ
       SUBPROGRAM ≠B≠
                                                                                    BR2
      WRITE (6,51a)
                                                                                    8830
  518 FORMAT (30X+13HTREE SELECTED)
                                                                                    8840
      NUMU=NOD-1
                                                                                    884
      DO SI NOSIONOMO
                                                                                    BRE
      IO=INTRE(NU)
                                                                                    8870
      NUMC=NUMX(IO)
                                                                                    88125
      TYPB (NUMC) = TYPX (IO)
                                                                                    BH.
      JB(NUMC)=JBX(IO)
                                                                                    8477
      FB (NOWC) = FRX (IO)
                                                                                    8916
      SYM(NUMC)=5YMX(IO)
```

	IQUAL (NUMC) = IQUALX (IO)		895
	VAL(NUMC)=VaLX(IO)		894
			895
	NUML (NUMC) = NUMLX (IO)	,	
	INTREE (NUMC) = 1		896
		•NUMC•JR(NUMC)•LB(NUMC)•SYM(NUMC)•	897
	11QUAL (NUMC) . VAL (NUMC) .		891
511	7 FORMAT (4X+A2+6X+12+6X	(+12+6X+72+6X+A3+A1+E12+5+2X+12):	899
	KLU=KLU+1		900
	LINC(NUMC)=0		901
	IF (TYPH (NUML) . NE . VV) G	10 10 3	902
	MO=MO+1		903
	IVV (MO) = NUMC		904
	3 IF (TYPB (NUMC) . NE . CV) G	.0 10 4	909
•			906
	FU=F0+T		907
	ICV(LO) = NUMC		
•	4 JF=JH(NUMC)		908
	LF=LB(NUMC)		909
	IB(JF.LF)=NUMC		910
	IB(LF, JF) =NHMC	and the second of the second o	911
	I+('JE) #ORL=('AC) #ORL		912
	JROJ=JROW(JF)		913
	NF(JF, JROJ) = LF	and the second of the second o	914
	NS(JFOLF)=1		915
	JROW(LF)=JROW(LF)+1	•	916
	JROL=JROW(LF)	and the second of the second o	917
			918
	NF (LF + JROL) = JF		
_	NS(LF,JF) =-1		919
2	1 CONTINUE		920
	WRITE(6,260)		921
	wRITE(6,715)		922
715	5 FORMAT (30x) JHSFG/)	· · · · · · · · · · · · · · · · · · ·	923
	00 13 ILL=1.NOD		924
	JROJ=JROW(ILL)+1		925
1.	3 NF(ILL JROI) = 0		926
С	•		427
Č	SUBPROGRAM ≠C≠		928
č		S SIGNAL FLOW GRAPH INFO.	929
Č	FROM BRANCH NODE TO L		930
C	NOBY=NOB	ANN NUIZE	
			931
ָכוּ בַּ	1 CONTINUE		932
	NES=0	- -	93
	LON=0		934
	IF (KLU=NUB) 532,360,532	•	430
53	2 LINK=LINK+1		936
	IF (NOTREE (LINK)) 534,53	4 • 532	937
			938
534	4 NUMC=NUMX(LINK)		
53	· -		930
53	TYPE (NUMC) = TYPX (LINK)		939
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK)		940
53	TYPE(NUMC)=TYPX(LINK) JK=JHX(LINK) LK=LHX(LINK)		940 941
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LBX(LINK) SYM(NUMC)=SYMX(LINK)		940 941 942
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=IQUALX(LIN	IK)	940 941 942 943
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LBX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) CVAL(NUMC)=YALX(LINK)	IK)	940 941 942 943 944
53	TYPE(NUMC)=TYPX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) UMB=NUMC)=YALX(LINK)	IK)	940 941 942 943 944
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LRX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) CVAL(NUMC)=VALX(LINK) HUMB=NUMLX(LINK) TYP2=TYPE(NHMC)	IK)	940 941 942 943 944 946
53	TYPE(NUMC)=TYPX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) UMB=NUMC)=YALX(LINK)	IK)	940 941 942 943 944
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LRX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) CVAL(NUMC)=VALX(LINK) HUMB=NUMLX(LINK) TYP2=TYPE(NHMC)	IK)	940 941 942 943 944 946
53 ₁	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LBX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) NUMB=NUMLX(LINK) TYP2=TYPE(NHMC) CVALU=CVAL(NUMC)	IK)	940 941 942 943 944 946 941
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=IQUALX(LINK) CVAL(NUMC)=VALX(LINK) NUMB=NUMLX(LINK) TYP2=TYPE(NHMC) CVALU=CVAL(NUMC) KLU=KLU+1 LINC(NUMC)=I	(K)	940 941 942 944 944 944 944
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=TQUALX(LINK) CVAL(NUMC)=VALX(LINK) HUMB=NUMLX(LINK) TYP2=TYPE(NHMC) CVALU=CVAL(NUMC) KLU=KLU+1 LINC(NUMC)=1 KDEPS=0	(K)	940 941 943 944 944 944 945
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=YALX(LINK) CVAL(NUMC)=VALX(LINK) HUMB=NUMLX(LINK) TYP2=TYPE(NHMC) CVALU=CVAL(NUMC) KLU=KLU+1 LINC(NUMC)=1 KDEPS=0 KANSO=0		940 941 943 944 946 946 946 950
53	TYPE(NUMC)=TYPX(LINK) JK=JBX(LINK) LK=LHX(LINK) SYM(NUMC)=SYMX(LINK) IQUAL(NUMC)=TQUALX(LINK) CVAL(NUMC)=VALX(LINK) HUMB=NUMLX(LINK) TYP2=TYPE(NHMC) CVALU=CVAL(NUMC) KLU=KLU+1 LINC(NUMC)=1 KDEPS=0	70 117	940 941 943 944 944 944 945

```
95401
    IF (TYPE (NUMC) . EQ. Y) GO TO 119
                                                                                      955n
    IF (TYPE (NUMC) . EQ. R) GO TO 700
                                                                                      9560
    IF (TYPE (NUMC) . EQ. Z) GO TO 700
                                                                                      957n1
    IF (TYPE (NUMC) . EU . C) GO TU 121
                                                                                      4580 F
                                                                                      9540
    IF (TYPE (NUMC) .EU.E) GO TO 123
                                                                                      9600
    IF (TYPE (NUMA) . EQ. CI) GO TO 123
                                                                                      461n
    IF (TYPE (NUMC) .EU. VC) GO TO 165
                                                                                      4650td
    IF (TYPE (NUMA) . EW. CC) GU TO 265
117 IXPS=-1
                                                                                      9630
                                                                                      9640
    KANSO=1
                                                                                      4651
    GO TO 123
                                                                                      966n
119 IXPS=0
    GO TO 123
                                                                                      9670
                                                                                      464ni
700 JXPS=0
                                                                                      469 nL
    KANS()=1
                                                                                      9700
    GO TO 123
                                                                                      9710
121 IXPS=1
                                                                                      4.720
123 CALL TREP (JK+LK+NF+NP+NPL)
                                                                                      y730
    IFIN=NUMC
                                                                                      9740
149 LON=LON+1
                                                                                      9750
    NP1=NP(LON)
    NP2=NP(LON+i)
                                                                                      4760
107 INIT=18(NP1, NP2)
                                                                                      4179
                                                                                      47An
109 SIGN=NS(NP1_NP2)
    IF (K EPS) 167 + 167 + 169
                                                                                      479
167 IF (IQUAL (NUMC) . EQ. IQ) GO 10 111
                                                                                      4800
    NES=1
                                                                                      481 r
    CONST=SIGN
                                                                                      9820
    GO TO 125
                                                                                      4836
111 CONST=SIGN#CVALU
                                                                                      4841
125 LIST=LIST+1
                                                                                      985e
    IF (NES) 502 + 503 + 502 1
                                                                                      9860
502 NEST(LIST)=1
                                                                                      4876
503 KONSO (LIST) = KANSO
                                                                                      9880
                                                                                      9898
    NFIRST(LIST) = INIT
    NLAST(LIST)=1FIN
                                                                                      740 E
    SYMBUL (LIST) = SYM (IFIN)
                                                                                      9910
    IXPON(LIST)_IXPS
                                                                                      9926-
    IF (KONSO(LIST))505,505,504
                                                                                      493
504 WEIGT (LIST) =1./CONST
                                                                                      494h
    GO TO 506
                                                                                      995n
505 WEIGT (LIST) = CONST
                                                                                      4961
506 MAPY (NUMC) = LIST
                                                                                      997[J
127 FORMAT (315,E12.5)
                                                                                      4420
129 FORMAT (A4)
                                                                                      499A
                                                                                     1000
     SUBPROGRAM #D#
                                                                                     10015
     THIS PROGRAM GENERATES SIGNAL FLOW GRAPH INFO.
                                                                                     10020
     FROM LINK NODE TO BRANCH NODE
                                                                                     1003
169 CONTINUE
    IF (TYPH (INIT) .EU.E) GO TO 201
                                                                                     10050
    1F(TYPB(INIT).EQ.CI)GO TO 201
                                                                                     1006
    IF (TYPB (INIT) . EQ. VV) GO TO 201
                                                                                     1007
    IF (TYPE (INIT) . EQ. CV) GO TO 201
                                                                                     1001
    LIST=LIST+1
                                                                                     10090
    IF (TYPH (INIT) . EQ.R) GO TO 133
                                                                                     101(13
                                                                                     101
    IF (TYPH (INIT) .EU. 2) G() TO 133
    IF (TYPB (INIT) .EU.G) GO TO 702
                                                                                     10126
    IF (TYPH (INIT) .EU.Y) GO TO 702
                                                                                     10130
    IF (TYPH (INIT) .EQ.CL) GO TO 135
                                                                                     1014
```

C

C

C

C

			-11/-		
		IF (TYPE (INIT) .EU.C) GO TO 137			1015
	133	IXPON(LIST)=0			1016
		GO TO 141			1017
	702	IXPON(LIST)=0		. –	1018
		KONSO(LIST)=1			1019
		GO TO 141			1020
	135	TXPON(LIST)=1	•		1021
	133	•			1022
		60 10 141		,	1023
	137	IXPON(LISI) =-1			1023
		KONSO(LIST)=1			•
	141	IF (IQUAL (INIT) . EQ. 10) 60 10 139			1025
		NEST(LIST)=1			1026
		WEIGT(LIST)1.#SIGN		•	1027
		60 10 147			1028
	139	IF (KONSO(LIST))608,608,607			1029
		WEIGT(LIST) == SIGN/VAL(INIT)			1030
		60 TO 147			1031
	ANA	WEIGT(LIST) == SIGN+VAL(IN1T)	•		1032
		NFIRST(LIST)=IFIN			1033
	14/				1033
		NLAST(LIST)=INIT			1034
	() = =	SYMBUL(LIST) = SYM(INTT)			
	501	NPLA=NPL-1-LUN			1036
		IF (NPLA) 151, 151, 149	•	,	1037
С				•	1038
С		SUBPROGRAM E			1039
C		THIS PROGRAM SETS UP SEG INFO.	FOR VC		1040
С		TYPE CONTROL SOURCES	•		1041
-	165	NUNO=NUMB		•	1042
	103	IF (INTREE (NUMH)) 163,163,161		•	1043
	163	LIST=LIST+1	,		1044
	103	NFIRST(LIST) = NUMB		·	1045
		NOBY=NOBY+1			1046
		· · · · · · · · · · · · · · · · · · ·	•		
		NLAST (LIST) = NOHY			1047
		SYMBUL (LIST) = SYM (NUMH)	•		1048
		NNV0=NORA	ř		1049
		IF (TYPE (NUMA) .EQ.Y) GO TO 912			1050
		IF (TYPE (NUMA) .EQ.G) GO TO 912			1051
		IF (TYPE (NUMA) .EQ.C) GO TO 914			1052
		IF (TYPE (NUMa) .EQ.CL) GO TO 916			1053
		NUNO=0	·	,	1054
		JXPON(LIST)=0		,	1055
		GO TO 918	•	•	1056
	912	IXPON(LIST)=0			1057
		KUN0=1			1058
		60 10 918			1059
	014	IXPON(LIST) ==1		,	1060
	7 1 14	KUN0=1			
					1061
	4. • •	GO TO 918	•		1062
	916	IXPON(LIST)=1			1063
		KUN0=0		,	1064
	918	IF (IQUAL (NUMB) . EQ. IQ) GO TO 920		•	1065
		NEST(LIST)=1			1066
		WEIGT(LIST) 11.			1067
		GO TO 209			1068
	920	IF (KUNU) 922, 922, 924	•		1069
		WEIGT(LIST) = CVAL (NUMH)	•		1070
	٠ ـ ـ ـ	GO TO 209			1071
	024	WEIGT (LIST) = 1./CVAL (NUMB)			1072
	_	·			-
		KONSO(LIST)=1		•	1073
	161	LIST=LIST+1	•	•	1074
		NFIRST(LIST) = NUNO	•	•	1075
		•			

```
NLAST (LIST) = NUMC
                                                                                       1074
       SYMBUL (LIST) = SYM (NUMC)
                                                                                       10/763
       IXPON(LIST)=0
                                                                                       10740
       IF (IQUAL (NUMC) . EQ. IQ) GO TO 171
                                                                                       10700
       NEST (LIST) = 1
                                                                                       1000
       WEIGT (LIST) = 1.
                                                                                       1081
       60 TO 203
                                                                                       10820
                                                                                       1084
  171 WEIGT (LIST) = CVALU
  203 CONTINUE
                                                                                       1084
       60 TO 123
                                                                                       10850
C
                                                                                       10856
        SUBPROGRAM #F#
                                                                                       1087
C
        THIS PROGRAM SETS UP SFG INFO. FOR CC
                                                                                       1088b
        TYPE CONTROL SOURCES
                                                                                       10840
                                                                                       1090
  265 MUND=NUMB
       IF (INTREE (NUMB) ) 621,621,620
                                                                                       10916
  620 LIST=LIST+1
                                                                                       10970
       NFIRST(LIST) = NUMB
                                                                                       10930
       NOBA=NOBA*1
                                                                                       1094
                                                                                       10957
       NLAST(LIST) = NOBY
       SYMBUL (LIST) = SYM (NUMH)
                                                                                       10960
       MUNO=NOBY
       IF (TYPH (NUMB) .EQ. Z) GO 10 233
                                                                                       10446
       IF (TYPB (NUMA) . EQ.R) GO TO 233
                                                                                       10990
       IF (TYPB (NUMA) .EQ.CL) 90 TO 235
                                                                                       1100F
       IF (TYPB (NUMo) . EQ. C) GO . TO 237
                                                                                       1101
                                                                                       11024
      KUND=0
       IXPON(LIS()=0
                                                                                       11030
      60 TO 241
                                                                                      1104
  233 IXPON(LIS1)=0
                                                                                       1105
       KUN0=1
                                                                                       11060
       GO TO 241
                                                                                       11070
  235 [XPON(LIST) =-1
       KUN0=1
                                                                                       11094
      60 TO 241
                                                                                       11100
  237 IXPON(L151)=1
                                                                                       1111
      KUN0=0
                                                                                       1117
  241 IF (IQUAL (NUMB) . EQ. ID) GO TO 239
                                                                                       11130
      NEST(LIST)=1
                                                                                      11140
       wEIGT(LIST)=1
       GO TO 247
                                                                                       1115
  239 IF (KUNO) 900, 900, 902
                                                                                      J11/0
  900 WEIGT (LIST) = VAL (NUMB)
       GO TO 247
  902 WEIGT (LIST) = 1./VAL (NUMB)
                                                                                      11200
  247 KONSO(LIST)=1.
                                                                                      11515
  621 LIST=LIST+1
                                                                                       1122
       NFIRST(LIST) = MUNO
                                                                                       112
       NLAST (LIST) = NUMC
                                                                                      11240
       SYMBUL (LIST) = SYM (NUMC)
                                                                                       11247
       IXPON(LIST) = 0
                                                                                      1124
       IF ( TQUAL ( NUMC) . EQ. TQ) GO TO 27)
                                                                                      11270
       NEST(LIST)=1
                                                                                      11740
       WEIGT (LIST) = 1.
                                                                                      112
      GO TO 281
                                                                                      113(2)
  271 WEIGT(LIST) = CVALU
       GO TO 281
  281 CONTINUE
                                                                                      113
       GO TO 123
                                                                                      11340
C
                                                                                      11350
       SUSPROGRAM #G#
```

			119a-			
	NUBA=NOBA+1				•	
	NLAST (LIST) = NOBY					•
	SYMBUL (LIST) = SYM (NUNO)				•	
	IF (TYPB (NUNO) .EQ. Z) GU TO	423				
	IF (TYPB (NUNO) .EQ.R) GO TO					•
	IF (TYPE (NUNO) . EQ. CL) GO TO	435				
	IF (TYPE (NUNA) .EU.C) GO TO	437	•	•		
	KUN0=0		,			
	IXPON(LIST)=U				•	
	GO TO 441		•			
433	IXPON(LIST)=U					
	KUN0=1			•		
	GO TO 441					
435	IXPON(LIST)=1			•		
	KUN0=1			•	•	
	GO TO 441					
. 3 =	IXPON(LIST) ==1					
431		-				
_	KUN0=0		•			
441	IF (TQUAL (NUNO) .EQ. TQ) GO -F	U 439				
	NEST(LIST)=1	` `				
	WFIGT(LIST)=1.		,	t		,
	GO TO 448			•	•	
120	IF (KUNO) 908,908,910			•		
			•			•
908	WEIGT (LIST) = VAL (NUNO)	1	•			
	GO TO 448					
910	wEIGT(LIST)=1./VAL(NUNO)	:				•
	KONSO(LIST)=1	-	, .	•		
	CONTINUE	•				
**1	NHON=ONUN	•		•		
45]	LIST=LIST+1	•		4		•
	NFIRST(LIST)=NUNO	1				
	NLAST(LIST) =LT					
	SYMBUL(LIST) = SYM(LI)			•		
	IXPON(LIST)=0	•			•	
	IF (IQUAL (LI) • FQ • IQ) GO TO	471 .				
	NEST(LIST)=1	***	•	-		
	WEIGT(LIST)-1.					
	GO TO 403					
471	WFIGT(LIST)=VAL(LI)		•	• •	•	
403	CONTINUE			•		
	CONTINUE			•		
+ V J					•	
	CHRDDOGDAM +T+			ů.		
	SUBPROGRAM #I#	. شير مو				
	GENERATING OUTPUT NODE O	r SFG				
					•	
515	CONTINUE	•	•		•	
	IF (NOUT) 514, 512, 514			•		
	CALL TREP (NODA , NODB , NF , NP	NOL 1				
510	- Cat C INTELLINOM TINUUU TNE THE	ALC.		. •		
512						-
512	NOUT=NORA+1		/	,		
512	MUDU=NORA+1			,		
512	NOUT=NORA+1	•		·		
512	MUDU=NORA+1			,		
512	NOUT=NOBY+1 MOPU=NPL-1 DO 510 MOP=; MOPU N1=NP(MOP)		. '			
512	NOUT=NOBY+1 MOPU=NPL=1 DO 510 MOP=; MOPU N]=NP(MOP) N2=NP(MOP+1)		. '			
512	MOPU=NOBY+1 MOPU=NPL=1 DO 510 MOP=; MOPU N]=NP(MOP) N2=NP(MOP+1) LIST=LIST+1					
512	NOUT=NOBY+1 MOPU=NPL=1 DO 510 MOP=],MOPU N1=NP(MOP) N2=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=I6(N1,N2)				"	
512	NOUT=NOBY+1 MOPU=NPL=1 DO 510 MOP=j,MOPU N1=NP(MOP) N2=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=IB(N1,N2) NLAST(LIST)=NOUT					
512	NOUT=NOBY+1 MOPU=NPL=1 DO 510 MOP=],MOPU N1=NP(MOP) N2=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=I6(N1,N2)					
512	NOUT=NOBY+1 MOPU=NPL=1 DO 510 MOP=; MOPU N1=NP(MOP) N2=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=IB(N1+N2) NLAST(LIST)=NOUT SYMBUL(LIST)=ONE					
512	MOPU=NOBY+1 MOPU=NPL=1 DO 510 MOP=; MOPU N]=NP(MOP) NZ=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=IB(N1,N2) NLAST(LIST)=NOUT SYMBUL(LIST)=ONE IXPON(LIST)=0					
512	NOUT=NOBY+1 MOPU=NPL=1 DO 510 MOP=j,MOPU N]=NP(MOP) NZ=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=IB(N1.N2) NLAST(LIST)=NOUT SYMBUL(LIST)=ONE IXPON(LIST)=0 KONSO(LIST)=0					
	MOPU=NOBY+1 MOPU=NPL=1 DO 510 MOP=; MOPU N]=NP(MOP) NZ=NP(MOP+1) LIST=LIST+1 NFIRST(LIST)=IB(N1,N2) NLAST(LIST)=NOUT SYMBUL(LIST)=ONE IXPON(LIST)=0					

```
THIS PROGRAM SETS UP SEG INFO. FOR VV
                                                                                      1137
C
                                                                                      11388
C
        TYPE CONTROL SOURCES
                                                                                      11391
  360 IF (MO) 460, 460, 364
                                                                                      1140
  364 DO 305 MI=1.MO
                                                                                      11416
       KI=IVV(MI)
                                                                                      11420
       NUNO=NUML (KT)
                                                                                      11436
       IF (LINC (NUNU)) 361,361,363
                                                                                      1144
  363 LIST=LIST+1
                                                                                      1145 8
      NFIRST(LIST) = NUML(KT)
                                                                                      11460
      NOBY=NOBY+1
                                                                                      1147
       NLAST (LIST) = NUBY
                                                                                      ]14H
       SYMBUL (LIST) = SYM (NUNO)
                                                                                      11490
       IF (TYPE (NUNn) .EQ.Y) GO TO 333
                                                                                      11500
       IF (TYPE (NUNO) .EQ.G) GO TO 333
       IF (TYPE (NUNO) . EQ. C) GO TO 335
                                                                                      1152
       IF (TYPE (NUND) .EQ.CL) GO TO 337
                                                                                      11530
       KUN0=0
                                                                                      1154
       IXPON(LIST) = 0
                                                                                      1155
      GO TO 341
                                                                                      11560
  333 IXPON(LIST) = 0
                                                                                      1157 C
       KUN0=1
                                                                                      11534
       60 TO 341
                                                                                      1159
  335 IXPON(LIST) == 1
                                                                                      11600
       KUN0=1
       GO TO 341
                                                                                      1161億
                                                                                      1105
  337 \text{ IXPOM(LIST)}=1
      KUN0=0
                                                                                      11630
                                                                                      11647
  341 IF (IQUAL (NUNO) . EQ. IQ) GO TO 339
      NEST (LIST) =1
                                                                                      11650
       WFIGT(LIST) = 1.
                                                                                      1166
      GO TO 348
                                                                                      11670
  339 IF (KUNO) 904, 904, 906
                                                                                      116R (**)
  904 WEIGT(LIST) = CVAL(NUNO)
                                                                                      11694
       GO TO 348
                                                                                      11700
  906 WEIGT(LIST)=1./CVAL(NUNO)
                                                                                      11710
  348 KONSO(LIST) =1
                                                                                      11720
  347 CONTINUE
                                                                                      1173年
      NUND=NOBY
                                                                                      11740
  361 LIST=LIST+1
                                                                                      117500
       NFIRST(LIST) = NUNU
                                                                                      11760
       NLAST (LIST) .. KI
                                                                                      11770
       SYMBUL (LIST) = SYM(KI)
                                                                                      11780
       IXPON(LIST)=0
                                                                                      1179₫
       IF (IQUAL (KI) . EQ. IQ) GO TO 371
                                                                                      1180 da
      NEST (LIST) =1
                                                                                      11810
      WEIGI(LIST) = 1.
                                                                                      118200
       GO TO 303
                                                                                      1183d
  371 WEIGT(LIST) = VAL(KI)
                                                                                      11847
  303 CONTINUE
                                                                                      11850
  305 CONTINUE
                                                                                      11864
C
                                                                                      1187個
        SUBPROGRAM #H#
                                                                                      11881
C
        THIS PROGRAM SETS UP SEG INFO. FOR CV
                                                                                      1189 ng
        TYPE CONTROL SOURCES
                                                                                      1190
  460 IF (LO) 515,515,464
  464 DO 405 MI=1.LO
                                                                                      11920
      LI=ICV(MI)
                                                                                      1193個
                                                                                      1194
      NUNO=NUML(LI)
       IF (LINC (NUNO)) 463,463,461
                                                                                      11950
  463 LIST=LIST+1
                                                                                      11960
      NFIRST(LIST) = NUML(LI)
                                                                                      11974
```

	CONT TABLE	1960-
	CONTINUE	12590
514	NFIRST(1)=NOUT	12600
	IF (LISTG) 486,486,1200	12610
	WRITE (6, 263)	15650
263	FORMAT(1x,37HINITIAL TERMINAL EXPONENT BRANCH ,	12630
	135HBRANCH & IF SYMBOL 1 IF SYMBOL)	12640
	WRITE(0,264)	12650
264	to the control of the	12660
	137H SYMBOL IS INVERTED IS USED)	12670
	DO 1202 J=1,LIST	12680
	WRITE (6,485) NFIRST(J)+NLAST(J), JXPON(J)+WFIGT(J),	12690
	1SYMBUL (J) , KUNSU (J) , NEST (J)	12700
		12710
	FORMAT (3x,12,7X,12,6X,12,4X,E12,5,1X,A3,UX,12,14X,12)	
	CONTINUE	12720
486	CONTINUE	12730
С		12740
č	SUBPRUGRAM ≠J≠	12750
Č	THIS PROGRAM ONDERS SEG INFORMATION	12760
C		_
Ć C	FOR INPUT TO MAIN PROGRAM	12770
-	00 87 J=1,NDG	12780
87	L=(L)XIM	12790
	KONU=LIST-1	12800
		=
	DO RO KUN=1, KONU	12810
	IU=KON+1	15850
• •	IL=KON	12830
	GO TO 83	12840
81	MXL=MIX(IL)	12850
	MIX(IL)=MIX(IU)	12860
		-
•	MIX(IU)=MXL	12870
	llsil-1	15880
	1U=1U=1	1289n
	1F(IL)80,80.83	12900
83	MIU=MIX(IU)	12910
	MIL=MIX(IL)	12920
	IF(NFIRST(MIU)=NFIRST(MIL))81,89,80	12930
<i>n</i> .		,
84	MXL=MIX(IL)	12940
	MIX(IL)=MIX(IU)	12950
	MIX(IU)=MXL	12960
•	IL=IL-1	12970
	IU=IU-1	12980
	IF(IL)80,80,82	12990
		-
85	MIU=MIX(IU)	13000
	DITEMITY (TE)	13010
	IF (NFIRST (MIU) -NFIRST (MIL)) 80,69,80	13020
89	IF(NLAST(MIU)=NLAST(MIL))80,80,84	13030
	CONTINUE	13040
-	CONTINUE	_
מטני.		13050
	RETURN	13060
	ENO .	13070
	SUBROUTINE FTREE (TYPX: JBX: LBX: INTRE: NOTREE, NUD: NOB)	13080
Canaa	****	13090
•		13100
C THI	E FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK	13110
C CH	ARACTERISTICS NHN: AND NSPT (DEFINED IN PROGRAM MAIN-1)	13150
	DIMENSION TYPX (35) + JBX (35) + LBX (35) + INTRE (35) + NOTPEE (35)	13130
	DIMENSION NY (35) +NF (32+35) +KCOL (20)	13140
Caass	**************************************	13150
	COWMON/CS/NNG*NRG	13150
	DATA E.VV.CV/ZHE .ZHVV.ZHCV/	**
		13170
	DATA ROCLOCY, 2/2HR OPHL OPHC OPHY OPHL	13180
•	DATA G/2HG /	13190
	•	

```
13200
      DO 40 IZ=1.NNG
      DU 40 13=1 .NNG
                                                                                  13210
                                                                                 13220
   40 \text{ NF}(12 \cdot 13) = 0
                                                                                 13230
      M≈0
                                                                                 13240
      K = 0
      KC=0
                                                                                 13250
                                                                                 13250
      DO 1 1=1.NOn
                                                                                 13270
    1 \text{ KCOL}(I) = 0
                                                                                 13240
      DO 3 17=1, NOB
                                                                                 13290
    3 NOTREE(I7) = n
                                                                                 13300
      T = 0
                                                                                 13310
    5 I=[+]
                                                                                 13320
      IF (TYPX (I) .EQ.E) GO TO 10
                                                                                 13331
    6 IF(TYPX(I) . FW. VV)GO TO 10
     IF (TYPX (I) .FW.CV) GO TO lu
                                                                                 13340
      GO TO 4
                                                                                 13350
                                                                                 13360
   10 K=K+1
                                                                                 13370
   14 INTRE(K)=I
                                                                                 13380
      JBX1=JBX(I)
      KCOL(JBXI) = KCOL(JBXI) + 1
                                                                                 13390
                                                                                 13400
      KCOL1=KCOL(16X1)
      NF(JBX1.KCOL1)=LBX(I)
                                                                                 13410
      IBX1=LBX(1)
                                                                                 13420
                                                                                 13430
      KCOL(IBX1)=KCOL(IBX1)+1
                                                                                 13440
      KCOL2=KCOL(TBX1)
      NF (TBX1.KCOLZ) = JBX1
                                                                                 13450
      NOTREE (I)=1
                                                                                 13460
      [F(K-NOD+1)2,22,22
                                                                                 13470
    2 IF (M) 4,4,12
                                                                                 13480
    4 IF (I-NOB) 5 , 12 , 12
                                                                                 13490 6
   12 M=M+1
                                                                                 13500
      IF (TYPX (M) .EQ.R) GO TO 16
                                                                                 135100
      IF (TYPX (M) .FW.G) GO TO 16
                                                                                 13520
   17 IF (TYPX (M) . EQ.CL) GO TO 16.
                                                                                 13530
   18 IF (TYPX (M) . FQ. C) GO TO 16
                                                                                 13540
   19 IF (TYPX(M) . EU.Y) GO TO 16
                                                                                 13550
   20 IF (TYPX(M) .FU.Z) GO TO 16
                                                                                 13560
      IF (4-NOB) 12,22,22
                                                                                 13570
   16 NINX=JBX(M)
                                                                                 13540
      NOUTX=LBX(M)
                                                                                 13590
      CALL TREP (NINX, NOUTX, NE, NP, NP, )
                                                                                 13600
      IF (NPL) 21, 21, 12
                                                                                 13610
   21 I=M
                                                                                 13620
      GO TO 10
                                                                                 13630
   SS CONTINUE
                                                                                 13640
      RETURN
                                                                                 13650
      END
                                                                                 13660
      SUBROUTINE TREP (NIN. NOUT. NF. NP. NP.)
                                                                                 13670
13680
                                                                                 13690€
   THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
                                                                                 13700
   CHARACTERISTIC NEW (DEFINED IN PROGRAM MAIN+1)
                                                                                 13710
      DIMENSION Jx (35) , NP (35) , JMEM (35) , KMEM (35)
                                                                                 13720
      DIMENSION NF (35,35)
                                                                                 13730
C#444464444444444444444444444444
                                                                                 13740
      COMMON/C2/NNG+NHG
                                                                                 13750
      DO 80 I5=1 NNG
                                                                                 13760日
      JX(15)=0
                                                                                 13770
      NP (15)=0
                                                                                 13740
      JMEM [5)=0
                                                                                 13790
   An KMEM(I5)=0
                                                                                 13800
```

```
NPL=0
                                                                               13810
      JX(1)=NIN
                                                                               13820
                                                                                13830
      NIN=(S)XC
                                                                                13840
      1=1
                                                                                13850
      NIN=L
      NP(I)=NIN
                                                                                13860
                                                                               13870
   20 K=0
                                                                                13880
   25 K=K+1
      IF (NF (J,K) -NOUT) 30,50,30
                                                                               13890
                                                                               13900
   30 IF (NF (J,K)) 34,32,34
   32 IF(J-NIN)60,100,60
                                                                               13910
                                                                               13920
C
C
       FLOWER CHECK
                                                                               13930
   34 NUKEMF (JoK)
                                                                               13940
      IF (NUK=UX(I))45,25,45
                                                                               13950
¢
                                                                               13960
C
       STORE AND REMEMBER VERTEX
                                                                                13970
   45 I=I+1
                                                                                13980
      NP(I) = NF(J \cdot K)
                                                                               13990
                                                                               14000
      JMEM(I)=J
      1A=1+1
                                                                               14010
                                                                               14020
      JX(IA) =NF(J.K)
   42 JENF (JoK)
                                                                               14030
      KMFM(I)=K
                                                                                14040
                                                                               14050
      60 TO 20
C
                                                                                14060
       BACKSTEP
                                                                                14070
                                                                               14080
   60 J=JMFM(I)
                                                                               14090
      K=KMEM(I)
      [=[-]
                                                                               14100
      GO TO 25
                                                                               14110
C
                                                                               14120
       FINAL PATH VERTEX AND PATH LENGTH
Ç
                                                                               14130
   50 II=I+1
      NP(II)=NOUT
                                                                               14150
   62 NPL=II
                                                                               14160
  100 CONTINUE
                                                                               14170
      RETURN
                                                                               14180
                                                                                14190
      END
      SUBROUTINE ARRAY (JSIG, XCON, JXPO, JKOD, POLY, LIL, KIK)
                                                                               14200
14210
                                                                                14220
   THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
C
                                                                               14230
   CHARACTERISTICS NTU: AND NEXPS (DEFINED IN PROGRAM MAIN-1)
C
                                                                                14240
      DIMENSION MSURT (15) . KSORT (150) . POLY (15.150)
                                                                               14250
                                                                                14260
      COMMON/C1/MSURT, KSORT
                                                                                14270
      COMMON/C3/NEXPS+NTO
                                                                               14280
      MMX = 0
                                                                               14290
      NNX=0
                                                                               14300
      IF(KIK-1)3,22,3
                                                                               14310
    3 MMU=K[K-]
                                                                               14320
      UMM . I = MM S 00
                                                                               14330
      MMX=MMX+1
                                                                                14340
      IF (JXPO-MSORT (MM)) 2,10,2
                                                                               14350
    2 CONTINUE
                                                                               14360
   22 MSORT(KIK)=JXPU
                                                                                14370
      MMX=K[K
                                                                                14380
      KIK=KIK+1
                                                                                14390
      IF (KIK-NEXPS-1) 1386, 1385, 1385
                                                                               1440n
 1385 WRITE (6+1387)
                                                                                14410
```

```
14420
 1387 FORMAT(1X,42HS-POWER EXCEEDS LIMIT-INCREASE DIMENSIONS ,
                                                                         144306
    116HCONTAINING NEXPS)
                                                                         14440
 1386 CONTINUE
                                                                         144506
  10 IF (LIL=1) 11,24,11
   11 NNU=LIL-1
                                                                         14460
                                                                         1.6470
     DO 12 NN=1+NNU
                                                                         14480
     NNX=NNX+1
                                                                         144901
     IF (JKOU-KSORT (NN)) 12,20,12
                                                                         14500
   12 CONTINUE
                                                                         14510
   24 KSORT(LIL)=JKOD
                                                                         14520回
     NNX=LIL
                                                                         14530
     LIL=LIL+1
                                                                         14540
     IF (LIL-NTO-1) 1367, 1365, 1365
                                                                         14550
 1365 WRITE (6.1366)
 1366 FORMAT (1X.446HNO. OF TERMS IN OUTPUT EXCELOS LIMIT-INCREASE.
                                                                         14560
                                                                         145701
    125HDIMENSIONS CONTAINING NTO)
                                                                        14580
 1367 CONTINUE
                                                                         145900
   20 POLY(MMX,NNX)=PULY(MMX,NNX)+XON+(-1.)V4JSIG
                                                                         14600
     RETURN
     END
                                                                         14610
     SUBROUTINE DECOUE(KOO+KODY+IZ+FB+JZ+SEMBOL+KODF+KODI+ITOP+KBASIS)
                                                                         14620
146305
                                                                         1464 CE
  THE FOLLOWING ARRAYS ARE ASSOCIATED WITH THE NETWORK
                                                                        14650
                                                                        146600
 CHARACTERISTICS NSPI: AND NIO (DEFINED IN PROGRAM MAIN-1)
C
     DIMENSION ITOP(150) SEMBOL(20) KOOF(20) KOOI(20)
                                                                         14670
146Ant
     COMMON/C4/NCPT
                                                                        14691
     12=0
                                                                        14/00
                                                                        14710
     M=KBASIS=1
     DO 3 J=1,KOO
                                                                        14720
     IPOWER=M. ANU. KOUY
                                                                         147300
                                                                         14745
     IF (IPOWER) 3,3,2
                                                                        14750
   2 IF (SEMHOL (J) . EQ. FB) GO TO 4
                                                                         14760
     17=12+1
     IF (IZ-NSPT-1)1371,1370,1370
                                                                        14770
                                                                         14/87
 1370 WRITE (6 1372)
 1372 FORMAT(1X,484NO. OF SYMBOLS PER TERM EXCLEDS OUTPUT-INCREASE
                                                                         14790
     126HDIMENSIONS CONTAINING NSPT)
                                                                        14800
 1371 CONTINUE
                                                                        14817
     KODF (IZ) = IPOWER
                                                                         1482년
     KODI(IZ)=J
                                                                         14830
     GO TO 3
                                                                        14845
   4 ITOP(JZ)=1
                                                                         14854
    3 KODY=KODY/KAASIS
                                                                         14860
     RETURN
                                                                         14870
     END
                                                                         1488
```

REFERENCES

- 1. A. De Mari, "On-Line Computer Active Network Analysis and Design in Symbolic Form", Proc. 2nd Cornell Elec. Engr. Conference, pp. 94-106, August 1969.
- 2. J.E. Barbay and G.W. Zobrist, "Distinguishing Characteristics of the Optimum Tree", 5th Allerton Conf. on Circuit and System Theory, pp. 730-737, 1967.
- 3. P.M. Lin and G.E. Alderson, "Symbolic Network Functions by a Single Path-Finding Algorithm", 7th Allerton Conf. on Circuit and System Theory, pp. 196-205, 1969.
- 4. H.W. Happ, "Flowgraph Techniques for Closed Systems", IEEE Trans. AES-2, May 1966.
- 5. D. Kroft, "All Paths Through a Maze", Proc. IEEE, Vol. 55, pp. 88-90, January 1967.
- 6. D.E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley, 1968.
- 7. J.E. Barbay and G.W. Zobrist, "Optimum Tree Generation by Tree Transformation", 11th Midwest Symposium on Circuit Theory, pp. 463-470, 1968.
- 8. E.V. Sorensen, "A Preliminary Note on the Analytical Network Program ANPI," Technical Report LKT 23, University of Denmark, Oct. 30, 1967.
- 9. L.P. McNamee, H. Potash, "A User's Guide and Programmer's Mannual for NASAP", Dept. of Engineering, University of California, Los Angeles, August 1968.
- 10. CORNAP, User's Manual, School of Electrical Engineering, Cornell University, 1968.
- 11. L.O. Chua, "Analysis and Synthesis of Multivalued Memoryless Nonlinear Networks", IEEE Trans. on Circuit Theory, Vol. CT 14, pp. 192-209, June 1967.